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Gene delivery has seen limited clinical success due to poor transfection efficiency 

or risk of carrier toxicity. Little understanding exists about the dynamic mechanical 

properties of DNA:carrier complexes, which we hypothesize are critical for protection 

and release of DNA. Using optical tweezers, we investigated the DNA condensation 

behaviors of 19-mer poly-L-lysine (PLL), a histidine-lysine peptide, 25 kDa branched 

polyethylenimine (PEI), G2-triethylenetetramine conjugated gold nanoparticles (G2-

TETA), and two triblock copolymers to identify the optimal force signature for efficient 

transfection.  

Force-extension profiles indicate that PLL and HK peptides condense DNA, 

showing force plateaus. When free peptide is removed, the force plateau of HK 

complexes decreased, but hysteresis persisted, indicating that some HK remains bound. 

Upon changing the pH from 7.4 to 5, HK complexes recovered plateau forces, due to 
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protonation of bound HK. This charge-regulated mechanical behavior is enhanced when 

the DNA:HK complex is exposed to Zn2+, resulting in the formation of a mechanically 

stiff complex. 

DNA:PEI complexes showed transient force plateaus with a maximum of 35 pN. 

Shortening of contour length was observed for condensation with 5 nM PEI. 1 M NaCl 

destabilized DNA:PEI complexes suggesting electrostatic interactions as the major force 

driving complexation. When 50 nM G2-TETA binds DNA, ~10 pN force plateaus 

appeared, disappeared, and contour length decreased despite pulling forces up to 50 pN. 

Neither 1 M NaCl nor 5 mg/mL heparin disrupted the complex. Contour length increased 

in 5% sodium dodecyl sulfate solution indicating that hydrophobic interactions play a 

major role in forming mechanically rigid condensates.  

Both guanidinylated and base copolymers show maximal plateau behavior 

followed by reduction in contour length. Recovery of the extension for the DNA:base 

copolymer complex is achieved by a combination of glutathione and either high salt or 

heparin. Conversely, high salt or heparin conditions alone are sufficient for 

destabilization of DNA:guanidinylated copolymer. Thus, guanidinylation of the 

copolymer enhanced sensitivity to ionic environments.  

Condensed DNA force profiles using different agents were unique regarding their 

condensation behaviors and responses to environmental changes. Regulation of these 

interaction forces between DNA and carriers during complex preparation and under 

physiological conditions will improve transfection efficiencies in vivo.  
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1 Introduction 

Gene therapy has been widely regarded as a promising approach for the treatment 

of disorders such as cancers and hereditary conditions [1-3]. In its present state of 

development, a major roadblock in gene therapy is the lack of a safe and efficient 

delivery vehicle. Thus, the focal point of gene delivery carrier design is non-viral vectors 

such as cationic polymers and peptide carriers, which tackle the issue of biocompatibility; 

however they display limited transfection capabilities as compared to viral vectors [4]. 

The potential reasons for limited efficiency lie in the set of physiological obstacles that 

the complexes must navigate: these include the stable transport of packaged DNA in the 

bloodstream, targeting to specific cells, endocytosis, endosomal escape, unpackaging of 

DNA, and nuclear transport [5].  

Surmounting some of these barriers requires delicate regulation of the forces 

between nucleic acid and carrier. For example, carrier and nucleic acid complexes must 

remain stable in the bloodstream, but upon cellular internalization, the complex must 

respond to changes in the environment by releasing nucleic acids from the complex. 

However, there is a lack of understanding of the optimal interaction forces between DNA 

and carrier required to protect or release DNA and how these forces are regulated under 

various physiological environments. Such understanding may be required for rational 

design of more efficient carriers for gene delivery.  

The specific objective of this dissertation is to utilize optical tweezers and single 

molecule mechanics to correlate the structure of the carrier to mechanical properties with 

the aim to elucidate the delivery mechanism as well as identify the optimal force 

signature for efficient transfection. The central hypothesis is that the mechanical 



www.manaraa.com

 
2 

 

properties of a highly efficient carrier will demonstrate changes in mechanical response 

to both temporal and spatial factors, in order to circumvent biological barriers and 

provide adequate protection from degradation, yet allow for release of nucleic acid at the 

target location.  

Using custom built optical tweezers, force vs. extension profiles were collected 

for DNA condensed with polylysine and histidine-lysine peptides (Chapter 2), 

polyethylenimine (PEI) and PEI-mimicking ligand coated gold nanoparticles (Chapter 3), 

and bi-functional triblock polymers (Chapter 4). Each condensing agent produces a 

characteristic force profile which is determined by the chemical interactions between the 

cationic carrier and the DNA. Furthermore, dynamic mechanical responses to 

environmental stimuli such as pH, high salt, and reducing environments are revealed. We 

then correlate these mechanical behaviors to their transfection efficiencies to identify key 

mechanical criteria for the design of transfection agents (Chapter 5). Finally, we offer 

future directions for single molecule studies and gene carrier development based on this 

body of work (Chapter 6).  

1.1 Biological barriers and current approaches to gene delivery 

There are many biological barriers that limit the efficacy of a DNA-based gene 

delivery system. In order to successfully transfect a single cell, approximately 106 

plasmids must be internalized, and out of those, only 102-104 will successfully be 

localized to the nucleus [6, 7]. The first criteria that must be met is the carrier’s ability to 

provide stability in extracellular spaces. The extracellular compartment is comprised of 

intercellular and intravascular spaces. Here chemical and physical stability is important 

because nucleases are present in these locations and will degrade unprotected nucleic 

acids regardless if they are administered via intravenous or intramuscular injections [8, 
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9]. Condensation by using polycations has been shown to minimize exposure to nuclease 

activity [10]. Colloidal stability within the vasculature network can also present a 

challenge for efficient delivery. If the complex has a near net neutral charge, aggregation 

can occur via van der Walls forces. The variety and high concentration of biological 

molecules in the extracellular space can also disrupt charged complexes. Such 

interactions may lead to screening of ionic interactions between polycations and DNA, or 

screen electrostatic repulsion between complexes leading to aggregation despite the 

complex having a net charge. Specifically, many species of negatively charged 

molecules, such as glycosaminoglycans and serum albumin, can be found in the 

extracellular compartments and their interactions with the complexes may be unfavorable 

for transfection. In particular, these molecules can induce aggregation or compete with 

DNA to bind to polycations [11].     

DNA must associate with cell surfaces to initiate the endocytotic process; uptake 

cannot occur without such an interaction, and increased circulation of the polyplex only 

increases the chances for renal clearance. Without a delivery vehicle, DNA is unlikely to 

associate to the cell surface, which has a highly negative charge density due to the 

phospholipid groups. By shifting the net charge of the overall complex towards net 

positive charge, i.e. through condensation via polycations, a favorable electrostatic 

association between the complexes and the cell surface is created. It has been 

hypothesized that these surface interactions are mediated by heparin sulfate 

proteoglycans, which are present on all cell surfaces, and also have a high negative 

charge density [12]. Generally, upon association with the cell surface, nonspecific 

clatherin mediated endocytosis is likely the preferred method of endocytosis. Other 
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pathways are accessible, but are in general triggered using targeting moieties or 

specialized cells [12]. There has been some evidence that cationic agents themselves may 

induce endocytosis by charged-based modulation of the endocytotic pathway [13].  

Upon internalization, the vesicles fuse into an endosome, and escape from this 

compartment has been generally regarded as the major rate limiting barrier for efficient 

transfection. In the early endosomal stage two types of early endosomes with different 

fates have been identified. The sorting endosome redistributes material from the cell 

surface within the cell, while the recycling endosome returns internalized material to the 

cell surface and expels it. Currently, there is little knowledge about the factors which 

determine these endosomal fates, how the two populations are regulated, and if gene 

delivery systems have a propensity to end up in one or the other. However, if the 

nanoplex fails to escape at the early endosome stage, it will find itself in either a late 

endosome or a lysosomal compartment. At this stage DNA is degraded enzymatically.  

Several mechanisms of escape have been proposed, and vary by the properties of 

the particular delivery vehicle. For example, cationic lipids mix with the endosomal lipid 

bilayer, which leads to membrane destabilization and disruption. The release of DNA is 

hypothesized to be based on the anionic lipids competing with DNA for binding of the 

cationic lipids [14]. As cationic and anionic lipids mix and fuse, the charge density of the 

lipids interacting with the DNA decreases, thus allowing for release of the nucleic acid. 

This mixing process also destabilizes the endosomal membrane and leads to disruption. 

Fluorescence experiments demonstrate that this mixing and release occurs early after 

endocytosis and can be observed as a gradual process [15]. It is interesting to note that 

disruption only occurs at endosomal membranes and not at cell membranes. Researchers 
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attribute this difference to different lipid composition at the two interfaces. In an 

analogous mechanism, cationic polymers such as polyaminoamide (PAMAM) 

dendrimers and poly-L-lysine (PLL) have been shown to directly disrupt lipid bilayers 

[16]. PEI has also been shown to disrupt specific membranes, again suggesting that 

targeting endosome lipid bilayer destabilization can be mediated by lipid composition 

[17].  

Perhaps the most well-known mechanism for endosomal escape is the proton 

sponge hypothesis. In this process, acidification of the endosome caused by proton pumps 

in the endosomal membrane, leads to protonation of carriers with a pKa in the slightly 

acidic range. Simultaneously, as protons are pumped in, counter ions also enter the 

endosome to maintain electrostatic balance. The increased ion concentration leads to 

swelling and osmotic lysis [18].  

After endosomal escape, DNA must localize to the nucleus for transcription. Free 

diffusion of plasmid DNA is limited due to the crowded environment, and little evidence 

has been published for active transport of the plasmid to the nucleus. Unprotected DNA 

is again subject to nucleases in the cytosol, and it has been reported that the half-life of 

DNA in the cytosolic compartment is on the order of 50-90 minutes [19]. In the case of 

polycationic condensing species, there is evidence that DNA may be still partially 

complexed to cations after endosomal escape [14, 20-22]. 

In one study injection of PEI or PLL complexed DNA into the cytoplasm led to 

transfection, whereas injection of the unprotected gene directly did not, suggesting that at 

this stage protection is still needed [20]. One hypothesis exists that positively charged 

complexes are passively transported by a gradient of cell localized polyanions. The 
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complex would traverse from proteoglycans to microtubules, microfilaments, and finally 

to the nucleic acid rich nuclear region. If this is the case, it would necessitate that the 

polycationic species remain bound.  

The final barrier for transfection is for the nucleic acid to penetrate the nuclear 

envelope. Delivery of plasmid to the nucleus is essential for transcription, and three 

possible routes of penetration have been suggested. The first is that the DNA enters 

through the nuclear pores.  

These pores have two conformational states, open and closed. In the smaller 

closed states, only molecules with a diameter of <9 nm are permitted to diffuse in. In the 

open state, molecules up to 26 nm may diffuse through the nuclear envelope. Some 

groups are employing certain techniques to enhance the probability of transport through 

these pores such as incorporating nuclear localization sequences (NLS), or including 

binding sites along the DNA sequence for transport proteins such as karyophilic proteins 

[23]. It has also been hypothesized that cationic regions of the complex may themselves 

serve as a NLS, but experimental data demonstrates that nuclear localization is still 

limited. DNA complexed with PLL and PEI directly injected into the nucleus were able 

to be transcribed, which proves that complexes bound by PLL and PEI are still accessible 

to genetic machinery [20]. The other hypothesis for localization within the nuclear 

envelop is that the gene incorporates with chromatin during mitosis, when the cell 

initiates disassociation of the nuclear envelope [24]. This hypothesis has been supported 

by examining transfection ability with respect to the cell cycle. Based on the 

aforementioned biological barriers to gene delivery, it is apparent that there is a need for 
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a biocompatible delivery vehicle which can provide a mechanism for internalization, 

endosomal escape, and localization to the nucleus.  

1.2 Non-viral vectors for single molecule investigation 

While viruses have been nature’s method of choice for gene delivery, risk of 

immunogenic response has led to the development of many non-viral vectors. Previous 

studies have shown that cationic peptides strongly bind and condense the DNA into 

nanoscale complexes (polyplexes) [25].  Poly-L-lysine, one of the first polymers to be 

studied for non-viral gene therapy, is a poor carrier due to limited ability to escape 

endocytotic pathways [26, 27]. PEI, whose transfection levels have been considered the 

gold standard in non-viral delivery, has been found to accumulate in cells and induce 

significant levels of apoptosis, with one PEI study reporting a cell death rate of 98% [28-

30].  The overall ability of PEI to act as an effective delivery vehicle is often attributed to 

its buffering capacity. At physiological pH, approximately 15-20% of the amines are 

protonated [31]. However, a high buffering capacity may not be the essential parameter 

controlling gene delivery. It has been shown that acetylation of a 25 kDa branched PEI in 

amounts up to 43% demonstrated improved in vitro transfection [32]. Titrations 

confirmed that acetylation decreased buffering capacity, yet enhanced transgene delivery 

was observed in two cell lines.  

1.2.1 Histidine-lysine peptides  

Histidine-lysine based peptides have been developed as a gene delivery carrier 

based on a design that combines lysine residues for DNA compaction, and histidine 

residues to mimic the proton sponge capacity for which PEI is often credited for its 

transfection ability [33]. For this dissertation the particular HK peptides used have four 
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branches around a three-lysine core (Figure 1.1). Each branch has a repeating sequence of 

three histidines and a lysine. For the HK peptides used in this work, each of the four 

branches has the sequence: GKHHHKHHHGKHHHKHHHK. Earlier research has 

shown that polymers consisting of lysine and histidine or imidazole containing groups are 

able to efficiently transfect an array of cell lines, up to four orders of magnitude higher 

than with PLL, without cytotoxic effects [34, 35].  

 
Figure 1.1 Structure of HK peptide, showing a three lysine core and the amino acid 
sequence of each branch. 

1.2.2 Surface-modified gold nanoparticles  

AuNPs are good candidates for gene delivery applications for several reasons 

including ease of functionalization and synthesis [36].  Their small size leads to a high 

surface area-to-volume ratio which maximizes the payload/carrier ratio. Additionally, 

they can be synthesized with good control of charge and hydrophobic properties by 

controlling ligand attachment. The gold nanoparticle cores are also regarded as being 

non-toxic [37].  
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The particular nanoparticles of interest have been developed by the Rotello group 

at the University of Massachusetts, Amherst, and are functionalized using 

polyethyleneimine-like triethylenetetramine (TETA) ligands (Figure 1.2) [38]. The 

particles have a 2 nm gold core and approximately 80 ligands per particle; this leads to a 

maximum charge of +240, +480, and +960 for G0, G1, and G2 particles respectively. The 

particles combined with the ligand shell leads to a hydrodynamic diameter of 𝑑𝑑𝐺𝐺0  =

 11.7 ±  4.1 𝑛𝑛𝑛𝑛, 𝑑𝑑𝐺𝐺1  =  15.7 ±  3.8 𝑛𝑛𝑛𝑛, and 𝑑𝑑𝐺𝐺2  =  15.7 ±  4.5 𝑛𝑛𝑛𝑛. These sizes 

make them comparable to histone octamers which have been reported to be 6.5 nm in 

diameter [39]. G2 nanoparticles have been proven to be efficient in delivering siRNA in 

vitro; DNA transfection results have not been reported. Lysine coated nanoparticles, 

however, have demonstrated the ability to deliver plasmid DNA, with branched lysine 

moieties enhancing the transfection. The improvement as compared to poly-L-lysine was 

5-fold for the lysine AuNPs and 28-fold for the AuNPs functionalized with a branched 

lysine moiety [38].  

 

Figure 1.2 Structure of G2-TETA. Modified from  [40]. 

1.2.3 Dual responsive polymers  
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This work will also seek to compare the aforementioned delivery systems with 

dual responsive polymers. Specifically, we aim to characterize the mechanical properties 

and dynamic environmental response of a block copolymer developed for in vivo gene 

transfer developed by the Pun Lab at the University of Washington.  The particular 

polymer we intend to test is composed of a poly(ε-caprolactone) (PCL) block, a 

oligoamine tetraethylenepentamine (TEPA)-poly(glycidyl methacrylate) (PGMA) block, 

and an oligo (ethylene glycol) block; the blocks are hydrophobic, pH-responsive, and 

hydrophilic, respectively. The rationale behind the design of this particular polymer is 

that the PCL block provides improved blood circulation time, as well as low toxicity due 

to biodegradability, and the pH responsive block is suggested to aid in endosomal escape 

[41]. After the complex enters the cytoplasm, the reductive environment may be able to 

remove the PCL block via reduction of a di-sulfide bond and thus initiate release of DNA 

from the polymer similar to the predicted mechanism for release from gold nanoparticle 

systems. In vitro studies have shown this ternary copolymer to be capable of transfection 

with both plasmid DNA as well as siRNA.  
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Figure 1.3 Structure of base and guanidinylated copolymers. PCL block is indicated 
in blue, ethylene glycol in yellow, and the TEPA-PGMA block is in green with both the 
base and guanidinylated structures shown. Modified from [42].   

1.3 Optical tweezers 

Custom built optical tweezers will be used to directly probe the DNA compaction 

and release process, similar to methods used to probe the structure of chromatin, 

multivalent cation interactions with DNA, and PAMAM:DNA complexes (Figure 1.2) 

[43-46]. The optical tweezers uses a focused laser beam to trap a dielectric bead near the 

focal point [47-49]. Figure 1.2a shows a schematic of the optical path. Infrared light from 

twin diode lasers (845 nm) is carried through optical fibers into piezo-electric wigglers. 

The piezo-electric optical fiber wigglers move the end of the optical fiber and thus move 

the trap. A small fraction of the light is picked up by a pellicle beam splitter and sent to a 

position sensitive detector (PSD) to infer the trap positions. Light leaving each trap is 

collected by the opposite objective and directed, by virtue of its polarization, into force-

detector optics: two momentum-flux detectors measure force on the trapped object by 

changes in the momentum of the trapping light, without laborious calibration [50, 51].  
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Figure 1.4 a) Schematics of optical paths. Components: OBJ=water immersing objective 
lens, pbs=polarizing beam-splitter, PSD=position-sensitive photo detector, 
PD=photodiode, npbs=non-polarizing beam-splitter, CCD=charge coupled device 
camera, LED=light emitting diode. b) Schematic showing optical tweezer setup. 

 

The fluid sample chamber is fixed on a motorized x-y-z stage. The instrument is 

equipped with force clamping capability that enables us to monitor the extension 

variation at constant force level with millisecond time resolution. The force resolution is 

less than 1 pN and the spatial resolution is ~1 nm [50, 51]. 

1.3.1 Single molecule studies of DNA 

The mechanics of single molecule dsDNA has been well characterized using 

optical and magnetic tweezers. The force vs. extension behavior of DNA has reliably fits 

worm-like-chain dynamics [52]. At a physiological salt concentration (150 mM NaCl), 

dsDNA will exhibit a persistence length of ~47 nm, and thus, based on a known contour 

length of the molecule, the force extension curve can be predicted. Because DNA has 

well defined properties, it is an ideal system to study the changes as other molecules are 

incorporated to the system. The force profile of DNA has been studied bound to 

a)               b) 
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intercalating agents, and major/minor groove binders [53]. Intercalation drastically 

changes the elastic response of DNA to force, and can readily be observed [54, 55].  

Mechanics of DNA condensation have also been studied in various systems using 

optical tweezer setups. Chromatin fibers have been examined to determine the nature and 

strength of the molecular level interactions between histone proteins (and their aceytlated 

tails) and DNA [43, 56, 57].  

More recently, these approaches have also been applied to DNA:cationic 

condensing systems such as multivalent cations, PAMAM dendrimer, and self-

aggregating cationic and hydrophobic peptides [44-46, 58]. These studies not only act as 

proof of concept that mechanical changes in DNA are easily identifiable, it also suggests 

that regulation of DNA condensation and unraveling is a biological task that the cell 

already performs on a regular basis. 

1.4 Significance and innovation  

Despite all the steps taken to circumvent biological barriers, the efficiency of 

delivering genes via non-viral carriers has not yet improved to the point where they 

are clinically useful. Surmounting these barriers requires delicate regulation of the forces 

for efficient protection and release of the nucleic acids. In recent work, single molecule 

techniques have provided direct evidence about how mechanical force may influence 

gene regulation in biological systems [59]. For instance, individual nucleosomes have 

been disrupted by the application of forces between 20-40 pN [43]. The procession of 

RNA polymerase is shown to be halted around 20 pN [60]. Viruses compact DNA inside 

their capsules exerting ~70 pN forces [61]. Additionally, DNA polymerases can exert 15 

pN to separate DNA [62]. These single molecule measurements indicate that the 
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interaction forces of DNA complexes are highly regulated. These results suggest that 

interactions between DNA and cationic carriers need to be carefully regulated within a 

narrow force range in order for transfection to proceed without any mechanical barriers. 

In particular, it has been demonstrated that binding inhibits transcription, which suggests 

modulation of the release of DNA may be of utmost importance [63].  

This body of work aimed to measure interaction forces between DNA and 

cationic carriers under relevant environmental stimuli in order to establish a quantitative 

measure of the complex mechanical response. Force-based criteria can subsequently be 

applied for the intelligent design of novel cationic carriers with improved transfection 

efficiencies.  

This work is innovative because it capitalizes on the ability of the optical 

tweezers to directly measure the mechanical properties of the complex formed from 

a single DNA molecule in real time, including response to sequential changes of 

environment.  The advantages of single molecule data include the ability to track a 

single “complex” through various changes. This is accomplished by the use of 

microfluidics which allows for a well-controlled and well-defined environment. Whereas 

biological assays have variation due to cell line, culturing conditions, etc., the 

environmental parameters such as solute species, solute concentrations, pH, and solvent 

quality are all precisely and accurately tuned in the microfluidics setup. This becomes 

useful when extreme conditions, such as high salt (as compared to physiological 

conditions), are necessary to perturb responses that would not otherwise show up in vitro 

or in vivo.  
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Another benefit of the single molecule setup is the ability to observe various 

responses and see the whole ensemble of possible behaviors. In bulk, typically the result 

from the average ensemble behavior is the only one observed. Optical tweezers allow for 

the exploration of the temporal aspect of the response and observe the time evolution of a 

particular single molecule response. Additionally, by approaching characterization from a 

mechanical standpoint, these assays may show differences between carriers that have 

similar physical properties or chemical compositions. Being equipped with a resolution of 

0.1 pN and 1 nm makes the optical tweezers very sensitive to changes that may otherwise 

be missed in other force spectroscopic tools such as AFM or magnetic tweezers. Another 

limitation of AFM is the necessity of the sample to be surface bound, and the optical 

tweezers allows for molecular level interactions to occur in all three dimensions in a 

relatively unconstrained manner.  

Bulk experiments cannot track the process, just correlate the start point with the 

result and the coupling of single molecule to bulk studies will provide a mechanistic 

understanding of  transfection outcomes due to different carriers.   
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2 Direct Observation of Dynamic Mechanical Regulation of 

DNA Condensation by Environmental Stimuli1 

2.1 Introduction 

Gene therapy, the delivery of genetic materials to targeted cells, has great 

potential for the treatment of hereditary diseases and cancers  [26].  Significant efforts 

have been made to develop effective carriers in viral and non-viral platform [26]. Non-

viral carriers have been extensively investigated because of their lower toxicity and more 

facile manufacture in comparison to viral vectors. Among non-viral carriers, synthetic 

cationic peptides have been shown to strongly bind and condense DNA into nanoscale 

complexes that are an effective platform for delivery [25]. However, the efficiency of 

delivering genes via synthetic carriers has not yet improved to the point where they are 

clinically useful. The potential reasons for limited efficiency lie in the set of 

physiological obstacles that the complexes must navigate: these include the stable 

transport of packaged DNA in the bloodstream, targeting to specific cells, endocytosis, 

endosomal escape, unpackaging of DNA, and nuclear transport. Surmounting some of 

these barriers requires delicate regulation of the forces between nucleic acid and carrier. 

For example, stable and uniform interaction between carrier and nucleic acid is required 

to protect DNA in the bloodstream, but later or in response to changes in the environment 

the interaction needs to weaken to release nucleic acids from the complex. However, 

there is a lack of understanding of the optimal interaction forces required to protect or 

                                                             
1  This chapter has been adapted (with permission of the publisher) from: Lee, A., et al. (2014). "Direct 
observation of dynamic mechanical regulation of DNA condensation by environmental stimuli." Angewandte 
Chemie, International Edition in English 53(40): 10631-10635. 
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release DNA and how these forces are regulated under various physiological 

environments, which prevents rational design of more efficient carriers for gene delivery.  

Single molecule force spectroscopy can provide mechanistic insights into 

biological processes at a level of detail inaccessible in bulk studies [60, 64, 65]. 

Previously, interaction forces between DNA and a cationic polyaminoamide (PAMAM) 

dendrimer were measured at the single molecule level [46]. The interactions are 

electrostatic, and dendrimers remained bound to DNA after a washing step, exerting ~10 

pN forces during stretching. Recently, the mechanical properties of the complex between 

DNA and the self-aggregating peptide Kahalalide F were measured using optical 

tweezers, revealing a two-step kinetic process that forms highly rigid aggregates via 

electrostatic interaction and hydrophobic collapse [58].  

  Here, we use optical tweezers to directly observe dynamic changes in the 

interaction forces between DNA and carrier in response to concentration, pH and metal 

ions. Custom-built tweezers with high force and spatial resolution are utilized to probe 

mechanical behaviours of DNA complexes [66]. Two different cationic peptide agents, 

19-mer poly-L- lysine (PLL), and histidine-lysine (HK) based peptides, are examined to 

compare dynamic behaviours as they interact with DNA.  

Histidine-lysine based peptides have been developed as a gene delivery carrier 

that contains lysine residues for DNA binding and compaction, and histidine residues to 

carry out the proton sponge mechanism for endosomal escape [33]. The ~80-residue HK 

peptides used here have four branches around a three-lysine core (Figure 1.1). Each 

branch has a repeating sequence of HHHK. with the exact sequence of each branch being 

C-term-GKHHHKHHHGKHHHKHHHK-N-term. Compared to PLL, HK based peptides 
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have been found to be more effective transfection agents in vitro and in vivo (Chapter 5). 

Linear PLL is known to condense DNA, but its transfection efficiency from previous 

work was found to be marginal [67]. 

2.2 Materials and methods 

2.2.1 Materials  

Streptavidin (SA)-coated beads (2.1-µm nominal size, Spherotech, Lake Forest, 

IL) and anti-digoxigenin (AD)-coated beads (4.26-µm nominal size, Spherotech, Lake 

Forest, IL) are used for the optical tweezers experiments. The DNA construct was 

synthesized using the method developed by Stone and colleagues, with 

modifications.[68] Briefly, the single-stranded cos sites of lambda phage DNA were 

exposed and filled in with a dNTP cocktail containing biotin-14-dATP and biotin-14-

dCTP (Life Technologies, Grand Island, NY) using Klenow exo- (New England Biolabs, 

Ipswich, MA). On the other hand, the digoxigenin-labeled linker was prepared by 

polymerase chain reaction (PCR) using lambda phage DNA as template, oligonucleotides 

5’- TGATTTCCAGTTGCTACCGA -3’ and 5’-CAGGTATCGTTTGGAGGCAG -3’, and 

a dNTP mixture containing digoxigenin-11-dUTP (Roche Diagnostics, Indianapolis, IN). 

The labeled DNA linkers were each digested with XbaI (New England Biolabs, Ipswich, 

MA). The digestion product from the digoxigenin-labeled DNA was dephosphorylated, 

and subsequently ligated to the digestion product of the biotinylated DNA. The ligated 

product was called as ½λ DNA. HK polymers and PLL were synthesized with a Rainin 

Voyager synthesizer (PTI, Tucson, AZ) in ~100 µg/mL concentrations. 
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2.2.2 Optical tweezer setup and force measurements  

Before the pulling experiment, the beads are first blocked for 20 minutes with 5 

mg/mL BSA (Sigma, St. Louis, MO) and 0.1% Tween20 (Sigma, St. Louis, MO). After 

incubation, beads are centrifuged, the supernatant (which contains excess BSA) is 

removed, and the beads are re-suspended in a buffer containing 0.1 mM Tris, 150 mM 

NaCl, 1 mM EDTA, and 0.05% sodium azide, pH 7.4 (Buffer A). AD beads are then 

incubated with ½λ DNA for 10 minutes. The SA beads are trapped on a micropipette tip 

and remain stationary during the experiments. AD beads are held by the optical trap. A 

dsDNA tether is created by moving the AD bead into close proximity to the SA bead and 

allowing the biotin-labeled end to bind to the SA beads. The beads are separated by a 

~5.5 µm block distance imposed by the optical trap which prevents the beads from 

touching or allowing nonspecific adsorption of DNA onto the bead surfaces. The rate of 

stretching and relaxation was varied from 50 to 500 nm/sec. The data collection rate was 

100 Hz and no data smoothing was performed. The presence of a single DNA molecule 

between the beads was confirmed by observing the overstretching transition at ~65 pN. 

Injection of 1 µM peptide solution into the chamber is carried out at a rate of 5 µL/min. 

To change buffer conditions within the chamber, the complex is washed with 100 µL of a 

buffer, at a rate of 10 µL/min.  Because the channel volume is ~30 µL and the flow is 

laminar, washing with ~3 times the channel volume is sufficient for a complete exchange 

of a buffer. 

2.2.3 Force profile analysis 

Worm-like-chain (WLC) model fitting 

Relaxation curves were fit using the Marko-Siggia model [52]. 
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Where F is force, kB is Boltzmann’s constant, T is temperature, Lp is the persistence 

length, L0 is the contour length of the DNA molecule, and x is the extension. The curves 

were fit from 0-5 pN to avoid a deviation from the model due to elastic modulus 

contribution. In cases where there was a reduction in contour length, the calculated L0 

was used as a fitting parameter to find the persistence length. (See the following section 

on contour length calculation) 

Contour length calculation 

The contour length was obtained by the following method (Figure 2.1). The 

contour length was calculated by taking a linear fit to the elastic regime of the force 

profiles near maximum extension (at forces between 30 and 50 pN, where R2 of linear 

least squares fitting is greater than 0.95). From each linear fit, the x-intercept was 

calculated. The difference between the linear fit of the naked DNA and the linear fit for a 

particular force curve represent a change in contour length. At force ranges above 30 pN 

we assume that the entropic contribution to the elasticity is negligible, and the force 

extension relation describing this portion of the line is:  

𝐹𝐹 = �
𝐾𝐾
𝐿𝐿0
� 𝑥𝑥 − 𝐾𝐾 

where 𝐿𝐿0 is the contour length, 𝐾𝐾 the stretch modulus, 𝑥𝑥 the length and 𝐹𝐹 the force on the 

biopolymer [43]. Thus the x-intercept (𝐹𝐹 = 0) is where 𝑥𝑥 = 𝐿𝐿0.  
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Figure 2.1 Calculation of contour length in the presence of Zn2+. The change in 
contour length between any force curve and the initial DNA molecule is calculated by 
linear fitting to the 30-50 pN range of the curves. The x-intercepts (𝑭𝑭 =  𝟎𝟎 𝒑𝒑𝒑𝒑) are equal 
to the contour lengths. 

 

Plateau force measurement 

For a particular experimental condition, the force values for either the stretch 

curve or relax curve are graphed as a histogram using Igor Pro 6 (WaveMetrics, Portland, 

OR). The bin width was autoset and a total bin number was 100. The histogram is then fit 

with a Gaussian distribution to determine the mean and standard deviation of the plateau 

force distribution (Figure 2.2).  
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Figure 2.2 Plateau force calculation using a histogram fitting method. (a) From a 
representative DNA:HK force curve, a histogram is created from the forces recorded for 
both the stretching (blue) and relaxation (red). The histograms are fit with Gaussian 
distributions (blue curve to fit data during stretching and red curve to fit data during 
relaxation) to determine the mean and standard deviation of the plateau forces. (b) A 
representative DNA:PLL curve after washing exhibits double plateau behavior. Two 
peaks in the histogram of relaxation curve forces indicates the presence of the double 
plateau.  

 

2.3 Results and discussion 

In our experimental setup, ½ λ double stranded DNA (24 kbp) is functionalized 

with biotin and digoxigenin and tethered between two beads via specific interactions 

(Figure 1.1a and Experimental Section) [68]. The upper bead was moved up and down in 

the optical trap to stretch and relax DNA. The extension distance was controlled by 

a) 

b) 
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setting a block that limits the range of motion of the top bead. During injection of agents, 

the block location was initially set at ~5 µm from the lower, pipette-fixed, bead. In a 

typical experiment, 1 µM of condensing agent in a buffer (155 mM NaCl, 0.1 mM Tris 

pH 7.4, 1 mM EDTA, and 0.05% sodium azide) was injected into the chamber at a rate of 

5 µL/min while DNA was stretched and relaxed at a rate of 500 nm/s. Injection was 

stopped after 5 µL, when force profiles that clearly deviated from naked DNA features 

had developed and stabilized. The condensed DNA is identified by the appearance of 

stretching and relaxation force plateaus and hysteresis. All the reported force values are 

the average at least three experiments unless otherwise specified. 

2.3.1 Bound PLL displays resistance to washing compared to bound HK peptide 

As PLL or HK binds to DNA, the force profile of naked DNA (black trace in 

Figures 2.3 a and b) is gradually changed to show plateaus during a stretching and 

relaxation cycle (dark green in Figure 2.3a, dark blue in Figure 2.3b). The appearance of 

these force plateaus shows that both PLL and HK exert a tension and actively condense 

DNA. Plateau forces remained at relatively similar levels; no distinctive sawtooth pattern 

was seen in the profiles, indicating that the binding between DNA and both agents is 

rather uniform, without apparent large loops or bridged structures. The stretching plateau 

is at 11.2 ± 0.7 pN for the DNA:HK complex and 12.6 ± 1.6 pN for DNA:PLL (Figure 

2.2). Upon slowing the pulling rate down to 50 nm/sec, a decrease in the stretch plateau 

and an increase in the relaxation force are observed, indicating that the force profile 

becomes quasi-equilibrium behaviour at the slower rate (Figure 2.4). These force plateau 

levels are similar to those of PAMAM dendrimers, which showed a stretching plateau at 
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~10 pN [46], but they are well below the range of rupture forces of nucleosomes, which 

are observed between 20 and 40 pN [43].   

 
Figure 2.3 Force vs extension profiles of (a) 1 µM PLL and (b) 1 µM HK solution after 
peptide injection (dark green and dark blue) and after washing (light green and light blue) 
with Tris buffer. The force vs extension curve of naked DNA is shown in black. The inset 
in (b) shows the Worm-like-chain model fits for the relaxation curves of naked DNA and 
the HK:DNA complex after washing.   

 

For HK, the relaxation plateau occurs 6.6 ± 0.4 pN, and similarly PLL is at 8.1 ± 

1.4 pN. These relaxation plateau values are similar to the critical condensation force at 

which an active condensation starts for protamine (~6 pN), and spermidine (~7 pN) [45]. 

The  relaxation plateaus for HK and PLL are higher than that of PAMAM dendrimer (~4 

pN) and the critical condensation forces of other multivalent cations such as spermine (~3 

pN), cobalt hexamine (1.5 pN), and cobalt sepulchrate (3.5 pN) [45, 46]. The plateau 

a) 

 

 

 

 

 

b) 
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forces decreased as ionic strength increased, demonstrating that the driving force of this 

active condensation is largely due to electrostatic interactions between the phosphate 

backbone and the cationic peptides (Figure 2.5).   

 

 
 
Figure 2.4 The effect of a pulling speed on a plateau force. (a) For DNA:HK 
complexes, variation of the pulling rate from 50 nm/sec to 500 nm/sec showed a decrease 
in the relax plateau force and an increase in the stretch plateau force.  (b) Stretch plateau 
forces for 50 nm/sec, 250 nm/sec, and 500 nm/sec are 10.60 ± 1.47 pN, 11.78 ± 1.08 pN, 
and 12.05 ± 1.22 pN respectively. Relaxation plateau forces for 50 nm/sec, 200 nm/sec, 
and 500 nm/sec are 7.15 ± 1.11 pN, 6.10 ± 1.91 pN, and 5.88 ± 1.81 pN respectively. (c) 
For DNA:PLL complexes, variation of the pulling rate from 50 nm/sec to 500 nm/sec 
showed a decrease in the relax plateau force and an increase in the stretch plateau force.  
(d) Stretch plateau forces for 50 nm/sec, 250 nm/sec, and 500 nm/sec are 11.29 ± 1.27 
pN, 11.66 ± 1.38 pN, and 12.06 ± 1.59 pN respectively. Relaxation plateau forces for 50 
nm/sec, 250 nm/sec, and 500 nm/sec are 8.50 ± 1.10 pN, 8.32 ± 1.08 pN, and 7.10 ± 1.41 
pN respectively. 

a) b) 

d) c) 
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Figure 2.5 The effect of  salt on a plateau force. (a) For DNA: HK complexes, titration 
of NaCl concentration in buffer containing 10 mM acetate, 1 mM EDTA, 0.05% azide at 
pH 5.0 from 150 mM up to 1 M showed decreasing plateau values until naked-like 
behavior was obtained at 1 M NaCl.  (b) DNA: PLL complexes, as titration of NaCl 
concentration in 10 mM tris, 1 mM EDTA, 0.05% azide at pH 5.0 increases from 150 
mM up to 1 M showed decreasing plateau values until a WLC profile was obtained at 0.5 
M NaCl and naked-like behavior is recovered at 1M NaCl.  Error bars represent the width 
of the Gaussian distribution reported by Igor.  

 

To mimic the process of diluting prepared complexes into the bloodstream or a 

cellular environment lacking free cationic peptides, we washed away free condensing 

agent by injecting buffer into the chamber. Upon washing the PLL:DNA complex (Figure 

2.3a, light green), double relaxation plateaus (at 0.8 ± 1.2 pN and 5.1 ± 3.6 pN) were 

observed in two out of three experiments, suggesting formation of heterogeneous 

structure; single plateau behaviour was observed once (Figure 2.6). The stretching 

plateau decreased slightly (10.5 ± 3.6 pN) indicating that most of PLL molecules still 

remain bound to DNA after buffer injection.  

In sharp contrast, HK showed a significant decrease in both stretching and 

relaxation plateaus after washing (Figure 2.3b, light blue). The relaxation plateau 

disappeared, showing a naked DNA -like behaviour, while the stretching plateau value 

b) a) 
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decreased to 4.8 ± 5.3 pN. The decreases in both plateau forces is attributed to 

detachment of a significant number of HK molecules from the DNA, thus leading to a net 

negatively charged complex which exerts lower condensing force after washing.  This 

result is similar to the concentration dependence of condensation force of multivalent 

ions, for which a decrease in condensation force is observed at lower concentration [45]. 

 
Figure 2.6 The effect of pH on the force profiles of DNA:PLL complex. DNA is 
condensed with 1 µM PLL (dark green) in tris buffer (pH 7.4). After washing with 
peptide free buffer (light green), the force profile for this particular experiment exhibits a 
single plateau in the relax curve. The overall features of the PLL force profile remained 
similar in the presence of acetate buffer (pH 5) with a decreased hysteresis, showing no 
significant effect of low pH on their force profiles as observed in HK.  

 

Additionally, the relaxation curve of DNA:HK complex returned to worm-like 

chain behaviour, with a reduced persistence length (Lp) of 24.3 ± 6.0 nm (n=5) compared 

to a naked DNA (Lp = 43.9 ± 2.8 nm, n=6). The decrease in Lp is presumably due to 

charge screening by the HK that still remains bound to DNA after washing [69], as 

observed for the condensation of DNA by other agents [58, 70]. The observations that the 

tensile resistance during stretching deceases significantly and the relaxation profile 

resembles naked DNA behaviour indicate that HK:DNA complex may release HK 
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readily, allowing more efficient unpackaging when the concentration of cationic agents in 

the surroundings is low.  

2.3.2 DNA:HK complex recovers force plateaus at pH 5 

To simulate the low pH environment that the DNA complex would experience 

upon endocytosis, acetate buffer at pH 5 (10 mM acetate, 155 mM NaCl, 1 mM EDTA, 

and 0.05% azide) was introduced into the chamber at a rate of 10 µL/min after washing 

with Tris buffer. The pH drop did not elicit any changes in mechanical behavior of the 

DNA:PLL complex (Figure 2.6) whereas for the DNA:HK complex, stretching and 

relaxation plateaus reappeared at 14.0 ± 1.8 pN and 10.0 ± 1.0 pN respectively (Figure 

2.7. The return of both plateaus at pH 5 is likely due to the protonation of the 48 histidine 

residues (pKa ~6) in each HK molecule that remains bound during washing. The 

increased positive charge density of HK allows stronger electrostatic interactions between 

HK and DNA. The stretching plateau and relaxation plateau levels decreased as salt 

concentration increased from 150 mM to 1 M, confirming that electrostatic interactions 

are the major driving force for active condensation at low pH. (Figure 2.5) 

 

Figure 2.7 The effect of pH on the force vs extension profile of a DNA:HK complex. 
Force curves at pH 7.4 after washing and at pH 5 are shown in light blue and red 
respectively. Inset shows dynamic transitional behavior (purple) of force profiles while 
the pH was changing from 7.4 to 5. 
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Figure 2.8 The effect of Zn2+ on the mechanical properties of DNA:PLL complex. 
Addition of 1 mM Zn2+ did not result in shortening of contour length for a DNA:PLL 
complex. The stretch plateau in the presence of Zn2+ is at 11.1 ± 0.3 pN, and the relax 
plateau is 6.3 ± 0.5 pN (𝑛𝑛 = 3). 

2.3.3 Zn2+ chelation reversibly induces a mechanically rigid DNA:HK complex  

The dynamic response of the DNA:HK complex was further examined in the 

presence of divalent cations. When 1 mM Zn2+ in acetate buffer (pH 5) was injected into 

the chamber, the DNA:PLL force profile did not change (Figure 2.8), whereas the 

DNA:HK complex became mechanically very stiff and its contour length significantly 

decreased, contracting nearly to the block location at ~5.5 µm (Figure 2.9a and 2.1). The 

maximum force available in the optical trap (~100 pN) was not large enough to disrupt 

the complex formed in the presence of Zn2+. Subsequent stepwise movement of the block 

location in 500 nm increments (dotted grey line) caused corresponding decreases in the 

contour length of the complex (arrows in Figure 2.9a and b). This indicates that when the 

complex is allowed to contract, it interacts with zinc ion to form highly mechanically 

resistant structures (Figure 2.9b). The average final contour length was 2.87 ± 0.26 µm 

when the final block location was ~2 µm. The compaction does not always continue 

indefinitely (2 out of 4 experiments), and there is a slack region where the complex 
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extends at relatively low force (< 2 pN) with no apparent hysteresis (Figure 2.9a). Worm-

like chain fitting of the slack region reveals that the persistence length is much longer 

than that of naked DNA, up to an average of 187.5 ± 23.0 nm (n=3; Figure 2.10). The 

shape of the force profile along with the increased persistence length indicates that a very 

stiff complex is formed as DNA:HK complex interacts with Zn2+. A similar behavior is 

observed when DNA is collapsed by a hydrophobic peptide, although in that case the 

rigid complex is constrained by hydrophobic forces [58, 71]. 

 

Figure 2.9 The effect of Zn2+ on the mechanical behavior of the DNA:HK complex. 
(a) The red force profile for the DNA:HK complex was obtained after washing at pH 7.4 
and then decreasing the pH to 5. As 1 mM Zn2+ is added, the maximum extension 
decreases markedly, indicating the formation of a mechanically rigid complex. Sequential 
movements of the block location by 500 nm (yellow to brown) resulted in a further 
decrease of extension as indicated by arrows. (b) A plot of contour length (from fits to the 
worm-like chain model) vs. block location for the DNA:PLL complex and the DNA:HK 
complex. The dotted black line represents the original DNA contour length and the 
dashed grey line shows the 1:1 line between block location and contour length as a guide 
to the eye. (c) Recovery of extension upon washing with 1 mM EDTA. Numbers indicate 
sequential stretching and relaxation cycles.  
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Figure 2.10 The apparent persistence length of the complex increases as the 
DNA:HK complex shortens in the presence of Zn2+. Worm-like chain fitting revealed 
that as the complex is compacted, the apparent persistence length increases from 12.4 ± 
28.0 nm up to 187.5 ± 23.0 nm as the HK-DNA complex is allowed to pull to a block 
location of 2 µm (𝑛𝑛 = 3).  

 

The phenomenon of Zn2+ inducing the formation of a stiff DNA:HK complex is 

reversible upon injection of 1 mM EDTA in acetate buffer at pH 5. Within a few 

stretching/relaxation cycles, the initial contour length is recovered, with reappearance of 

force plateaus, showing that removal of Zn2+ allows the rigid complex to recover its 

original characteristics (Figure 2.9c). The dissociation constants of Zn2+/EDTA and 

Zn2+/Histidine are 1×10-16 M [72] and 8.8×10-13 M [73] respectively, so EDTA should 

readily chelate Zn2+ ions away from histidines in the rigid complex. Other cations such as 

Mg2+ and Ca2+ had no effect on force profiles and did not form a mechanically resistant 

complex (Figure 2.11). 

The highly mechanically resistant complex induced by Zn2+ is proposed to 

originate from chelation by multiple imidazole groups in histidine residues [74]. 
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Incorporation of a bi-histidine metal chelation site into a protein, GB1, has demonstrated 

an increase in mechanical stability in the presence of Ni2+ [75].  For DNA:HK, the fact 

that the relaxation by moving the block location is required to form the stiff complex 

suggests that participation of multiple histidines in HK polymers which are far apart from 

each other along the DNA is essential for polydentate coordinated complex formation. 

 

Figure 2.11 DNA:HK complexes maintain constant contour length in the presence of 
Mg2+ or Ca2+. The addition of either (a) 1 mM Mg2+ or (b) 1 mM Ca2+ did not result in 
decreasing the contour length for a DNA:HK complex. 

 

The rupture force of Ni2+/histidine coordination is a few hundred pN based on 

force spectroscopy [74]. The dissociation constant of Zn2+/histidine (8.8×10-13 M) is 

lower than that of Ni2+/histidine (5×10-7 M) and the corresponding ΔGdissociation is 

calculated to be 16.5 kcal/mol and 8.6 kcal/mol respectively [72, 76]. Although 

mechanical stability may not be directly correlated with thermodynamic stability [77], we 

expect that a similar or higher force would be needed to disrupt the DNA:HK in the 

presence of zinc ions, considering the nature of the interaction is the same.    

Our mechanical measurements using a single DNA molecule complexed with 

peptides demonstrated that environmental changes can cause significant differences in the 

b) a) 
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mechanical properties of a DNA:peptide complex. Specifically, the DNA:HK complex 

showed dynamic changes in mechanical properties at multiple force levels which could 

be exploited during the gene delivery process. When a DNA:peptide complex is injected 

into the bloodstream, it may undergo shear or elongational forces which may disrupt the 

complex, increasing chances of degradation of DNA [78].  

Previously, it was noted that supplementation of transfection medium with ZnCl2 

improved the transfection efficiency of a histidylated polylysine up to 40-fold [67]. It was 

believed that the fusogenic properties of Zn2+ with lipid membranes played a large role in 

endosomal escape. Based upon our data, addition of Zn2+ to histidine-containing peptides 

resulted in a highly mechanically stiff complex, which could be advantageous in 

maintaining the stability of the complex when it is in contact with bodily fluids. In 

addition, coordinated Zn2+ is expected to increase the zeta potential of the complex, 

which should enhance membrane interactions. Histidine protonation is likely to interact 

with endosomal membrane and destabilize it, enhancing endosomal escape. Both 

pathways will contribute to enhanced transfection efficiency. Zn2+ is considered 

relatively non-toxic and is maintained at micromolar concentrations in the blood plasma 

and millimolar concentrations in the cell; however, within the cytosol, concentrations of 

free Zn2+ are reduced to the femtomolar level by metalloregulatory proteins [79-81]. 

These Zn-binding proteins could compete for Zn2+ ions and facilitate release of the 

DNA:HK complex. Additionally, if protonation in the endosome occurs to the extent that 

the HK:DNA complex becomes overcharged, some HK molecules may be shed, 

accelerating the unpackaging process.  
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Recently, single molecule techniques have provided direct evidence about how 

mechanical force may influence gene regulation [59]. For instance, individual 

nucleosomes are disrupted at 20-40 pN [43]. The procession of RNA polymerase is 

halted at around 25 pN [60] and DNA helicase is known to exert 10-15 pN to separate 

DNA [62]. In our washing experiments, DNA:HK showed lower stretching and 

relaxation plateau forces than DNA:PLL, which suggests that HK is more easily removed 

from DNA than PLL. The fact that the stretching plateau force is ~5 pN suggests that HK 

is likely to be a more effective carrier in terms of allowing the unpackaging of DNA by 

endogenous nucleic acid processing systems. Previously, it was shown that multivalent 

cations such as spermine are completely washed away from DNA, as indicated by the 

disappearance of force plateaus [44]. In contrast, the DNA complex with PAMAM 

dendrimer does not show changes in force plateaus after washing, indicating that 

dendrimers are irreversibly bound [46]. One key parameter that may govern the 

mechanical response to washing is the number of charged groups per molecule. Spermine 

has a +4 charge and PAMAM (5th generation) has +128 charges, whereas HK and PLL 

contain +17 (at pH >7) and +20 charges respectively. Despite small differences in total 

charge per molecule, the observed variation in washing effect for HK vs. PLL may be 

attributed to linear charge density along the peptide backbone; at pH 7.4, PLL has a 

charged group on every residue, while  only ~25% of the residues along each HK branch 

are charged. Hence, both the total charge of the molecule and its charge density need to 

be considered to optimize interactions between DNA and condensing agents. It is also 

likely that secondary interactions such as hydrogen bonding between the HK peptide and 

nucleic acid may play a role in stabilizing the complex [82].  
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3.4 Conclusion 

Transfection studies indicate the importance of the size and charge of cationic 

polymers in controlling transfection efficiency [83, 84].  However, there have been few 

studies probing how charge regulation affects mechanical properties of the complex 

directly under various environments. Poly-L-lysine, one of the first polymers studied for 

non-viral gene therapy, is a poor carrier unless coupled with endosomolytic agents [25, 

27]. Polymers consisting of lysine and histidine or other imidazole-containing groups are 

able to efficiently transfect an array of cell lines, up to four orders of magnitude more 

effectively than PLL, without cytotoxic effects [34, 35].  

Our observations at the single molecule level reveal that there are multiple levels 

of interaction forces between DNA and HK polymers depending on the environment. 

After washing, a minimal level of interaction forces (<5 pN) was observed for HK, but at 

pH 5, the stretching plateau increased to 14 pN. In the presence of Zn2+, the complex 

became very strong and was not unraveled, indicating that a force greater than 100 pN is 

required. These forces and their responses to pH changes could be regulated judiciously 

by changing sequences and branching patterns, with the end goal being higher 

transfection efficiencies. Furthermore, the enhanced stability conferred by metal-ion 

chelation demonstrated here may be largely responsible for enhanced serum stability of 

the histidine containing peptide. The inclusion of histidine in the HK peptide allows for 

enhanced washing, force modulation based on pH, and stabilization by Zn2+, all of which 

may contribute to enhanced transfection. Finally, we suggest that single molecule 

techniques may serve as a platform for screening condensing agents for desirable 

mechanical properties prior to in vivo experiments.   
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3 Observation of Multi-stage DNA Condensation by 

Dendronized Gold Nanoparticles and Polyethyleneimine Using 

Optical Tweezers 

3.1 Introduction  

For the past couple of decades, gene therapy has been researched for its potential 

applications to treat human diseases, such as muscular dystrophy, cystic fibrosis, 

neurological ailments, or cancer [85]. Identifying and transferring therapeutic genes into 

target cells can alter gene expression, implement posttranslational modifications to 

proteins, or produce cytotoxins and prodrug-activating enzymes, which can be powerful 

and effective therapies to cure fatal diseases [26].  

There are two major modalities in gene delivery: recombinant viral vectors and 

synthetic non-viral vectors [26, 86]. Viral vectors are infectious agents that require hosts 

for replication and expression of its genome, parts of which can be replaced with a 

therapeutic gene. They have been successful in entering target cells and navigating to a 

nucleus for gene expression [85]. However, viral vectors have significant drawbacks such 

as the need for repeated administration, the possibility of dangerous immune reactions, 

the risk of reversion to a wild-type virus, and high manufacturing expenses, all of which 

make viruses less advantageous for clinical use. In contrast, synthetic vectors provide 

advantages in terms of safety, structural flexibility, and low cost of manufacturing [26]. 

These are typically positively charged materials which bind and condense negatively 

charged nucleic acids via electrostatic interactions. Current limitations of using synthetic 

vectors include poor gene transfer efficiency in physiological conditions, due to 
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extracellular barriers such as DNA complex bloodstream stability, as well as intracellular 

obstacles including endosomal escape, cytoplasmic transport, or unpackaging [26]. 

Microinjection experiments of plasmid DNA directly into the cytosol have demonstrated 

that nuclear localization is limited, emphasizing the importance of protection in the 

cytosol [4]. Furthermore, there is evidence that if DNA remains bound to the carrier 

within the nuclear envelope that transcription may be inhibited [87].     

We hypothesize that mechanical regulation of interactions between DNA and a 

carrier based on environment are key to providing the appropriate protection and release 

necessary for successful transfection. In the realm of high-resolution force spectroscopy, 

optical tweezers are appropriate instruments for identifying and quantifying the forces 

involved with DNA condensation at the molecular level. A tightly focused laser beam is 

utilized to trap a dielectric particle in three dimensions, and the particle is manipulated by 

beam movement. Simultaneously, distance and force are detected with a resolution of 1 

nm and 1 pN respectively [49, 52].  Optical tweezers have been utilized to demonstrate 

that cationic agents interact with DNA over a range of forces and kinetic steps for 

DNA:peptide or DNA:kahalalide complexes [58, 88]. They are able to distinguish 

transient and stepwise interactions that are otherwise difficult to observe in ensemble 

behaviors during condensation [58]. 

Our recent single molecule studies showed that there are histidine lysine branched 

peptide applies a force along the DNA upon binding and this force could be modulated by 

environmental conditions. Washing into peptide free buffer decreased interactions forces, 

whereas protonation at pH 5 and chelation of Zn2+ by the histidine residues were both 

able to increase the interaction forces, chelation leading to an order of magnitude increase 
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in force [88]. These interactions, measured at the single molecule level, provides insight 

as to how a DNA:cationic carrier will respond within the biological milieu.  

The two cationic carriers investigated in this study are 25 kDa branched 

polyethylenimine (PEI) and a cationic dendronized gold nanoparticle (AuNP). PEI, 

whose transfection levels have been considered the gold standard in non-viral delivery, 

has been found to accumulate in cells and induce significant levels of apoptosis, with one 

PEI study reporting a cell death rate of 98% [28-30]. The overall ability of PEI to act as 

an effective delivery vehicle is often attributed to its buffering capacity. At physiological 

pH, approximately 15-20% of the amines are protonated [31].  

In addition, the condensation and release process of G2-triethylenetetramine 

(TETA) nanoparticles will be examined. These nanoparticles have been previously 

developed with the aim to incorporate a PEI-like ligand, however with reduced toxicity 

due to the AuNP core.[40]  G2-TETA has been demonstrated to be efficient for siRNA 

delivery with high knockdown efficiency and low toxicity [40]. This study aims to 

investigate the mechanical behaviors of DNA complexed with PEI or functionalized 

AuNP to compare them and correlate the mechanical profiles with their transfection 

efficiencies.  

3.2 Materials and methods 

3.2.1 Materials  

25 kDa branched polyethyleneimine was purchased from Sigma Aldrich, St. 

Louis, MO. The synthesis of G2-TETA nanoparticles is described in detail in a previous 

paper, and they were generously supplied by the Rotello Research Group at the 

University of Massachusetts, Amherst [40]. Structures for both are shown in Chapter 1. 
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These dendronized nanoparticles are structured using a 2 nm diameter gold core 

decorated with polyethylenimine-like ligands. The ligands are based on a glutamic acid 

scaffold that is end terminated by cationic triethylenetetramine.  

Streptavidin (SA)-coated beads (2.1-µm nominal size, Spherotech, Lake Forest, 

IL) and anti-digoxigenin (AD)-coated beads (4.26-µm nominal size, Spherotech, Lake 

Forest, IL) was used for the optical tweezer experiments. The double end-labeled ½ λ was 

prepared as described in Chapter 2.   

3.2.2 Force measurements  

The experimental setup used has been previously reported [88].  In summary, SA 

and AD beads are first blocked for 20 minutes with 5 mg/mL BSA and 0.1% Tween20. 

After incubation, beads are centrifuged, the supernatant (which contains excess BSA) is 

removed, and the beads are re-suspended in a buffer containing 10 mM Tris, 150 mM 

NaCl, and 0.05% sodium azide, pH 7.4. AD beads are then incubated with ½λ DNA for 

10 minutes.  

For the duration of the experiment, the SA beads are fixed on a micropipette tip 

and remain stationary. AD beads are held by the optical trap. A dsDNA tether is created 

by moving the SA bead into close proximity to the AD bead with DNA and allowing the 

biotin-labeled end to bind to the SA beads. The presence of a single DNA molecule 

between the beads was confirmed by detecting the overstretching region at ~65 pN as 

well as fitting with the Marko-Siggia WLC model. The rate of stretching and relaxation 

was 500 nm/sec and data was collected at a rate of 100 Hz without data smoothing. 

Stretching is performed by moving the trap relative to the micropipette, and force and 

extension are recorded.  
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.  

3.2.3 General and pulse protocols for condensation 

For the optical tweezer experiments, we stretched a single ½ λ-DNA and 

condensed the molecule using G2-TETA nanoparticles or PEI. The experimental setup 

used has been previously reported [88].   

Injection of condensing agents in 10 mM Tris buffer (150 mM NaCl, 0.05% 

azide, pH 7.4) is injected into the chamber at a rate of 5 µL/min. During injection, a block 

location of 5.5 µm is maintained. After 100 µL has been injected, the block location is 

reduced by 500 nm increments and the complex is allowed adequate time to form a 

steady state at each location.  

For the DNA:PEI salt and heparin stability experiments, in order to capture 

transient plateau profiles, a pulse method of condensation was utilized.  For this protocol, 

cationic agent solution is injected 1 µL at a time, waiting 5 minutes between each 

injection. The injection is discontinued when the desired force profile has been achieved.  

3.2.4 Changing the microfluidic environment 

To change buffer conditions within the chamber, the complex is washed with 100 

µL of a buffer, at a rate of 10 µL/min.  With a channel volume of ~30 µL and the 

presence of laminar pressure driven flow, washing with ~3 times the channel volume is 

sufficient for complete solution exchange.  

Stability in solutions containing either 5 mM glutathione (GSH), 5 mg/mL 

heparin (Sigma Aldrich, St. Louis, MO), 1 M NaCl, or 5% SDS in 10 mM Tris buffer 

(150 mM NaCl, 0.05% azide, pH 7.4) is also tested. To test pH response, 10 mM acetate 

buffer (150 mM NaCl, 0.05% azide, pH 5) is injected into the chamber.  
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3.2.5 Force profile analysis 

The protocols for worm-like chain fitting, contour length analysis, and plateau 

force measurement reported in Chapter 2 were also utilized to analyze the single 

molecule data collected for the DNA:G2-TETA and DNA:PEI systems.  

All statistics are reported as mean and standard deviation unless otherwise noted. 

Number of molecules averaged for a reported value is n=3 unless otherwise indicated.  

3.3 Results 

 3.3.1 PEI Demonstrates Overcharging Behavior When Condensing DNA 

When DNA is condensed with 10 nM PEI, a dynamic maximization and reduction 

of force plateaus was observed (Figure 3.1). Shortly after injection, there is a sudden 

appearance of stretching and relaxation plateau forces. These plateau forces have been 

seen to reach a maximum of up to 27.2 ± 11.5  pN (n=3) for the stretch, and 13.3 ± 11.2  

pN (n=3) for the relaxation curve in 10 nM PEI experiments, requiring 2.93 ± 0.25 

𝑘𝑘𝐵𝐵𝑇𝑇/bp to stretch the complex. After reaching that maximum plateau force, the curves 

begin to decrease in plateau value and hysteresis until the relaxation curve returns to 

WLC behavior with a little hysteresis. This dynamic process is illustrated in Figure 3.1, 

which shows curves at 100 s, 170s, and 1040s after beginning the injection of PEI. It is 

important to note that it takes 1200 seconds to complete the injection process and that all 

these curves are collected as PEI is continuously being added to the system.  
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Figure 3.1 Dynamic plateau behavior is observed during condensation with 10 nM PEI. 
DNA pulling curves before (#1, black), and at various time points during injection of 10 
nM PEI: 100 s (#2), 170 s (#3) and 1040 s (#4). Pulling cycles are taken between a 
minimum extension of 5.5 µm and a maximum pulling force of 40 pN or a maximum 
extension of 8 µm, whichever is reached first.  

 

The same process is also observed for DNA fibers condensed with 5 nM PEI (data 

not shown). For the 5 nM condition, maximum plateaus observed are 30.7 ± 6.9 pN (n=7) 

and 20.8 ± 4.5 pN (n=7) for stretching and relaxation plateaus respectively. The 

appearance and disappearance of force plateaus during the injection process is evidence 

for overcharging of the DNA:PEI complex. The process of overcharging, or charge 

inversion, has been described for multivalent cations [45].  In this phenomena, the 

negatively charged DNA becomes less negative as multivalent cations bind and condense 

the fiber. As the concentration of the cations increases, the complex passes a net neutral 

point; at even higher concentrations, the complex is net positive and is considered 

overcharged. It has been shown that condensing force has a direct correlation to charge 

state, and that at near neutral conditions multivalent cations applied maximum 

condensing force on the DNA [45]. The dynamic appearance and then decrease in plateau 



www.manaraa.com

 
43 

 

in the force profiles of PEI-condensed DNA suggest the ability to create an overcharged 

complex.  The overcharged state (10 nM) involve minimal decrease in extension length 

(0.7 ± 0.5 µm shortening (n=3)), and its relaxation profile has mechanical properties 

similar to that of naked DNA (𝑳𝑳𝒑𝒑 = 47.4 ± 1.7 nm).  The stretch curve however, shows a 

WLC fit with a persistence length of 19.0 ± 2.1 nm (n=3). We believe that the PEI bound 

DNA is able to exhibit naked like DNA mechanics in the overcharged state because the 

accumulation of positive charge creates the same repulsive columbic force that the high 

density of phosphates provided initially.  

 

Figure 3.2 Representative force extension profiles of DNA condensed with varying 
concentrations of PEI. In all four profiles, the original DNA force profile is shown in 
light gray. Final profiles of DNA condensed with a) 1 nM, b,c) 5 nM, or d) 10 nM PEI 
are depicted in black. 
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The variation of force profiles for DNA:PEI complexes as a function of 

concentration further  illustrate the likelihood of overcharging. Representative force 

profiles of DNA condensed with either 1 nM, 5 nM, or 10 nM PEI are shown (Figure 

3.2). 1 nM PEI shows no hysteresis and has 𝐿𝐿𝑝𝑝 of 40.6 ± 8.1 nm (Figure 3.2a) (n=3). 

There is no appreciable reduction in the contour length. At 5 nM concentration (Figure 

3.2b-c), we see a decrease in persistence length down to 35.8 ± 13.5 nm, and an average 

shortening of 2.14 ± 1.76 µm (n=6). The decrease in persistence length can again be 

attributed to local bending due to the positive charges of a PEI molecule minimizing 

columbic repulsions between phosphates on the DNA backbone. At the 5 nM 

concentration, it is important to note that sawtooth unbinding events occurs over a broad 

range of force levels (10-40 pN). This is in contrast to other systems such as PAMAM 

dendrimer, poly-L-lysine, and histidine-lysine peptides which show narrow range of 

forces at which binding occurs [46, 88]. The discrepancy may be due to the high 

polydispersity of the branched PEI (polydispersity index = 2.5), thus effectively having a 

population of molecules with varying binding affinities. As the concentration is increased 

to 10 nM concentration (Figure 3d), observed persistence length increases back up to 

47.4 ± 1.7 nm (n=3), and complexes exhibit an average shortening of 0.69 ± 0.56 µm 

(n=3). In this overcharged regime, long range bridging is unlikely to occur because of 

charge-charge repulsions between PEI molecules.  

The concentration effect data demonstrates that DNA:PEI complexes can 

transition from undercharged, to neutral, to overcharged within an order of magnitude 

change in concentration. We believe that at 5 nM PEI the complex is already 

overcharged, as we are able to observe the dynamic appearance and decrease of plateaus. 
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However, the degree of overcharging can vary depending on actual number and size of 

PEI molecules bound, resulting in varying final contour lengths. It can be concluded that 

the mechanical response of a DNA molecule is sensitive to a narrow concentration range 

of PEI and that the net neutral condition leading to maximum condensation is between 1-

5 nM. Furthermore, we observe a lack of condensation at the undercharged and 

overcharged regimes which is reminiscent of reentrant condensation observed in 

multivalent cation systems; exposure to multivalent cations induced compaction of DNA, 

however further increase in cation concentration allowed DNA to adopt an extended 

conformation [89]. 

3.3.2 Salt and Heparin Destabilize DNA:PEI Complexes 

 

Figure 3.3 a) DNA condensed with 5 nM PEI exhibiting force plateaus was washed with 
10 mM tris buffer (pH 7.4, 500 mM NaCl, 0.05% EDTA) and resulted in a decrease in 
plateau forces and then transition to original contour length and WLC mechanics. b) 
DNA condensed by injection of 5 µL of 10 nM PEI showed a similar effect when treated 
with 5 mg/mL heparin in 10 mM tris buffer (pH 7.4, 150 mM NaCl, 0.05% EDTA). c) 
DNA condensed by injection of 8 µL of 10 nM PEI showed formation of a strongly 
condensed complex with a decreased contour length. Washing with heparin resulted in 
the appearance of plateaus which then continued to decrease in force and hysteresis while 
recovering ~ 3µm contour length.   

A major assumption of the overcharging model is that electrostatics are the major 

contributing force in determination of the mechanical properties of condensed DNA. To 

verify this hypothesis, complexes were prepared using the pulse method to produce a 
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force profile with stable plateau forces; washing with high salt (500 mM NaCl) 

demonstrates return to naked-DNA properties (Figure 3.3a). A complex formed with 1 

nM PEI exhibiting plateaus but did not show the full dynamic increase and decrease in 

plateau values, was treated with 500 nM NaCl. This salt concentration was sufficient to 

remove both the stretching and relaxation plateaus, as well as return the molecule to the 

original complex length (Figure 3.3a, black curve). A similar effect was able to be 

accomplished by exposing a complex condensed with 10 nM PEI (limited to 5 µL 

injection rather than the full 100 µL to capture the complex in a mechanical state where 

the force plateaus are preserved) to the tris buffer supplemented with 5 mg/mL heparin 

(Figure 3.3b). In both of these cases the dynamic response first show a decrease in 

plateau forces, which directly translates to a decrease in interaction forces between the 

PEI and DNA, leading to recovery of worm like chain mechanics.  

Another complex was formed by injecting 8 µL of 10 nM PEI and collapsed to a 

3.9 ± 0.1 µm contour length. The full injection volume of 100 µL is not used so as to 

capture the transient plateau behavior of the DNA:PEI complex. As heparin is introduced 

into the chamber, there is an appearance of stretching and relaxation plateaus, followed 

by decrease in plateaus, and all accompanied by a recovery of contour length (Figure 

3.3c). The initial appearance of plateaus follows the hypothesis that PEI is able to exert 

strong electrostatic interactions at forces >50 pN. The addition of heparin into the system 

can compete with DNA to interact with PEI thus decreasing the concentration of bound 

PEI available to condense DNA, until the DNA is released.  In experiments b-c 

perturbation of the condensate with either high salt or heparin recovered 93.68 ± 10.94% 
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of the contour length.  In fact, both high salt conditions as well as heparin have been 

shown to disrupt condensates in bulk [90]. 

Additionally, complexes condensed with 10 nM PEI were washed with 10 mM 

Tris buffer containing 1 M NaCl (not shown). Addition of 1 M NaCl to the buffer showed 

destabilization of the complex, a disappearance of hysteresis, and 0.5 µm recovery of 

contour length (not shown). The high salt treatment screened electrostatic interactions 

and allowed for release of PEI, thus providing evidence that electrostatic interactions play 

an essential role in stabilization of the condensed DNA.  

Washing back in to the low salt (150 mM) condition, showed a collapse of the 

molecule and significant shortening, with 4.2 µm (n=1) of shortening (not shown). This 

force profile is reminiscent of DNA condensed with 5 nM PEI. This confirms that 1 M 

NaCl removes some PEI from the complex, thus decreasing the net charge and leading to 

the formation of a more stable compact complex. This salt effect showed that electrostatic 

interactions are important both in regulating the condensation of the complex as well as 

direct binding of PEI to DNA. 

3.3.3 DNA:PEI Complex Mechanics are pH Sensitive 

Exposure to a decrease in pH was used to simulate the low pH environment that 

the DNA complex would experience inside the endosome. Using a slow pulse method of 

injection we could ensure that limited PEI was bound. 5 µL of 1 nM PEI was injected 1 

µL at a time, waiting 5 minutes between each injection. The resulting force profile 

(Figure 3.4a, black) exhibited limited hysteresis, no and no observed binding or 

unbinding events when brought to 2 µm block, and no observations of plateaus. Fitting 

with the worm like chain model resulted in a persistence length of 45.5 ± 0.1 nm (n=1) 
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and contour length of 8.4 µm. Any unbound or free PEI was washed using 1 mM Tris 

(150 mM NaCl and 0.05% azide) buffer injected at a rate of 10 µL/min.   

The drop to pH 5 was achieved by injection of 100 µL of 10 mM acetate buffer 

(150 mM NaCl and 0.05% azide), introduced into the chamber at a rate of 10 µL/min. 

Injection of acetate caused the appearance of hysteresis along with a decrease in the 

extensible length of the complex (Figure 3.4a). As the block location is reduced the 

complex continues to form a mechanically non-decondensible region with a final contour 

length of 3.7 ± 0.6 µm (n=1). The appearance of hysteresis, plateaus, and rigid structures 

at pH 5 is likely due to the protonation of the PEI molecules that remains bound during 

washing. The increased positive charge density of PEI at low pH allows the molecules to 

initiate condensation via increased electrostatic interactions between PEI and DNA. This 

transition also resembles a mechanical transition of a complex from 1 nM PEI to 5 nM 

PEI as described earlier.  

Reversibility of pH behavior was tested by two methods: washing with a high 

ionic strength condition (1 M NaCl) as well as cycling back to pH 7 (10 mM Tris, 150 

mM NaCl, and 0.05% azide. Washing with 1 M NaCl (Figure 3.4b) allows the complex 

to recover extension within 240 seconds (at an average rate of 975 nm/min), as 

electrostatic interactions are screened. The complex returns to full contour length (8.4 µm 

(n=1)) WLC force profile with no hysteresis or shortening and a persistence length is 

46.6 ± 0.1 nm.  

Additionally, cycling back from pH 5 to Tris at pH 7.4 was able to recover some 

contour (to 5.2 µm, or 40% of the contour that was incorporated into the mechanically 

rigid region) and the portion recovered exhibited a persistence length of 46.1 ± 0.1 nm, 
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however, a different progression of force profiles was observed (Figure 3.4c). Instead of 

seeing the rapid opening and decrease in stretching curve values, there is a slow (~103 

nm/min) extension of WLC shaped curves. This slow progression over a time scale of 

1205 seconds demonstrated that bound PEI may be difficult to deprotonate, either due to 

pKa shift or inaccessibility of the solvent to the ionizable group. The reversibility of the 

pH effect, either by high salt or increase of pH, confirms that electrostatic interactions are 

the major driving force for condensation at low pH.  

 

Figure 3.4 The effect of pH on force vs extension profile of DNA:PEI complex. a) 
Force curves at pH 7.4 after washing (black) and at pH 5 are shown in black and red 
respectively. Decrease of the block location by 500 nm (yellow to brown) resulted in a 
further decrease of extension forming a mechanically rigid complex as indicated by 
arrows. b) Recovery of extension upon washing with 1 M NaCl. Numbers indicate 
sequence of stretching and relaxation cycles. c) Recovery of extension upon washing 
with 10 mM Tris (150 mM NaCl and 0.05% azide). Numbers indicate sequence of 
stretching and relaxation cycles. 

Force response as a function of pH has been previously observed for histidine-

lysine (HK) peptide, but with a few notable differences; HK peptide showed a recovery 

of well-defined stretch and relaxation plateaus whereas PEI demonstrated formation of a 

mechanically rigid complex [88]. The increased strength of interaction leading to the 

reduction in extensible length may be due to total charge of the molecule.  
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3.3.4 G2-TETA Gold Nanoparticles Bind and Condense DNA 

To observe the effect of G2-TETA concentration on the condensation behavior of 

DNA we performed a titration, where a single DNA molecule was exposed to 

progressively increasing concentrations of G2-TETA: 1 nM, 5 nM, 10 nM, and 50 nM 

(Figure 3.5). At 1 nM and 5 nM concentrations (Figure 3.5a-b), we observed no change 

from a worm like chain profile. The 1 nM condition maintained a persistence length of 

42.7 nm (n=1), but for the 5 nM condition the persistence length was reduced to 11.8 nm 

(n=1). This reduction signifies binding and local bending, however the concentration 

bound is not sufficient to induce condensation. The 10 nM condition (Figure 3.5c) 

exhibits evidence of binding based upon the appearance of hysteresis and a small 

reduction in contour length which indicates the formation of interactions that cannot be 

disrupted by the force applied with the optical tweezers. However formation of this 

mechanically resistant region is limited as compared to 50 nM G2-TETA (Figure 3.5d). 

This suggests that the source of mechanical rigidity is concentration related and is 

sourced from the AuNP themselves; thus decreasing the concentration limits the amount 

of non-mechanically reversible collapse the molecule may experience.  
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Figure 3.5 Representative force profiles of DNA condensed with a) 1 nM, b) 5 nM, c) 10 
nM, and d) 50 nM G2-TETA nanoparticles are shown. Initial naked DNA profiles for 
each experiment are indicated by light gray curves. 

Exposure to 50 nM G2-TETA (Figure 3.6a) reproducibly showed distinct 

deviation from naked DNA mechanics with dynamic nature of the interactions in two 

stages. In the first stage, as G2-TETA binds to DNA, the force profile of naked DNA 

(black trace in Figure 3.6a) begins to show plateaus in the stretching and relaxation 

cycles (Figure 3.6a). The presence of these plateaus indicates that upon binding, G2-

TETA nanoparticles exert a tension along the DNA fiber to actively condense the 

complex. The plateaus increases to a maximum relaxation force of 4.6 ± 1.7 pN and a 

stretching force of 9.1 ± 3.9 pN (𝑛𝑛 = 8) (Figure 3.6a, initial binding). At maximal 
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plateau force, the complex requires 1.25 ± 0.31 𝑘𝑘𝐵𝐵𝑇𝑇/bp to extend.  However, as G2-

TETA continues to be injected and after this maximum plateau force is reached, the 

complex enters the second phase of condensation where the plateaus then begin to 

decrease with an associated decrease in the extensible length of the complex.  

 

Figure 3.6 Force extension profiles of a) naked DNA (#1, black), DNA as it initially 
interacts with 50 nM G2-TETA (#2, gray), and DNA:G2-TETA complex after 100 µL of 
injection (#3, black). Block location is maintained at 5.5 µm until injection is completed. 
B) Post injection, force profiles for DNA:G2-TETA at decreasing separation distance 
between the beads (indicated by gray dotted lines) are shown.  

By the end of the 100 µL injection (Figure 3.6a, final profile), the relaxation curve 

returned to worm-like chain behavior without a force plateau; by fitting using the WLC 

model, we observe that the persistence length is decreased approximately in half from 

42.0 ± 3.3 nm (n=9) in the naked DNA condition to 28.3 ± 8.8 nm (n=4)after binding 

with the gold nanoparticles. This is likely due to local bending of the DNA due to charge 

neutralization of the phosphate backbone [69]. This persistence length decrease has been 

observed in other systems including multivalent cations, anti-cancer drug Kahalalide F 

(KF), and peptide condensation [58, 70, 88].  The sequential decrease of extensible length  

as the block location decreases suggests that a mechanically rigid complex forms after the 

molecule is relaxed, although we see indications of disruption of some interactions in the 

stretching as indicated by hysteresis in stretch-relax cycling.  
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Initially, the beads are maintained at a 5.5 µm separation from one another. In 

addition to the disappearance of plateau forces, the molecule also undergoes 1.1 ± 0.5 µm 

(n=7) loss of extensibility when the block was located at ~5.5 µm . As this separation 

distance is decreased, we observe an associated decrease in the contour length of the 

complex (Figure 3.6b). The average final contour length was 4.2 ± 0.8 µm (n=5) at a 

block location of 2 µm. Physically, this represents that as the ends of the bound DNA are 

brought into closer proximity to each other, that segments along the strand have increased 

probability of interaction. These interactions lead to strong bonds which are unable to be 

reversed by mechanical forces up to 50 pN. Throughout the reduction in extensible 

length, the force profile retains a WLC shape, with minimal to no hysteresis. When 

fitting, we see an increase of 𝐿𝐿𝑝𝑝 up to a final value of 135.18 ± 14.8 nm at the 2 µm block 

(n=3). The shape of the force profile along with the increased persistence length indicates 

that a very stiff complex is formed; a similar behavior is observed when DNA is 

collapsed by hydrophobic peptide, KF [58].  

3.3.5 SDS Destabilizes DNA:G2-TETA Complexes 

To gain better understanding of the nature of the intermolecular interactions 

stabilizing the complex, buffer conditions were changed to the following conditions: 1 M 

NaCl, 5 mg/mL heparin, pH 5 Acetate buffer, 2% Tween 20, 5 mM glutathione (GSH, 

and 5% sodium dodecyl sulfate (SDS) (Figure 3.7b-d).  The only condition that was able 

to dissociate the complex is 5% SDS in buffer. When exposed to SDS, we observe 

significant recovery of contour length to a final length of 6.7 ± 0.4 µm (n=3), which is 

equivalent to the recovery of 61.5 ± 11.8% of the contour length lost (Figure 3.7a). 

Destabilization by a surfactant indicates the importance of hydrophobic interactions in  
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Figure 3.7 The effect of SDS on force vs. extension profile of DNA:G2-TETA complex. 
Force curves in Tris buffer (#1, light gray) and after injection of 5% SDS (#5, black) are 
shown. The dynamic transition of force profiles during injection of SDS is demonstrated 
by curves 2-4. The effect of 1 M NaCl or 5 mg/mL heparin on force vs. extension profile 
of DNA:G2-TETA complex. The light gray profiles in b-d) were obtained after 
condensing DNA with 50 nM G2-TETA and reducing the block location to 2 µm 
separation between the beads. Black force profiles result from injection of either b) 1 M 
NaCl, c) 5 mg/mL heparin, and d) 5 mM GSH and show limited change and no recovery 
of contour length.  

the formation of the stiff, compact state of the DNA:G2-TETA condensate.  In fact, the 

force required to expand a collapsed hydrophobic polymer in aqueous solution (>50 pN, 

for polystyrene (PS), poly(4-tert-butylstyrene) (PtBS), and poly(4-vinylbiphenyl) (PVBP) 

in aqueous solution) in is good agreement with observed inability to reach full extension 

with a range of 50 pN of force [71]. Additionally, hydrophobic interactions likely require 

sufficient time, after backbone charge neutralization, to organize and rearrange into stable 

hydrophobic contacts along the DNA which is observed in DNA condensation by 

Kahalalide [58]. This behavior of hydrophobic remodeling and growth can explain the 

second phase of condensation. The source of the hydrophobic collapse is likely due to the 

charge neutralization by DNA decreasing the solubility of the G2-TETA nanoparticles.  
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In fact, for lower generation (G0 and G1) TETA nanoparticles, complexation with siRNA 

led to precipitation of the nanoplexes [40].  

1 M NaCl, 5 mg/mL heparin, and 5 mM GSH were all unsuccessful in disrupting 

these strongly aggregated interactions and we observed negligible changes in contour 

length (<100nm). If condensation is electrostatically driven, we would expect that 1M 

NaCl to screen these columbic attractions. Similarly, heparin would act as a competing 

agent for the cationic agents [91]. Based on results from the high salt and heparin 

conditions, we can conclude that the strong interaction is not primarily due to 

electrostatic forces. Decreasing the pH from 7.4 to 5.0 also did not elicit a mechanical 

change, suggesting that the ionizable groups on the nanoparticle surface are inaccessible 

when bound to condensed DNA or that upon binding the TETA moiety experiences a 

pKa shift. Exposure to GSH to simulate the intracellular environment was expected to 

release DNA via ligand exchange at the gold surface. However, after the complex is 

condensed into this rigid state, GSH also seems to be unlikely to penetrate to the 

nanoparticle surface where it could potentially undergo ligand exchange. We suspect that 

the condensation is driven by hydrophobic interactions, yet Tween 20 was unable to show 

decondensation of the rigid structures either (data not shown). However, when the 

nanoparticles are incubated with Tween 20 prior to binding DNA (and Tween 20 remains 

present in the buffer), the formation of the shortened complex is inhibited (data not 

shown).  Because of the hydrophobic nature of the complex, it is unlikely that the salt, 

heparin, or GSH containing buffers are able to access the interface of the columbic 

attraction or the AuNP surface. As a result, the complex remained robust against these 

possible destabilizing conditions.  
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These results are in good agreement with those previously published which 

suggest that DNA wraps around the AuNP core [92, 93] and demonstrates release and 

recovery of DNA after exposure to SDS. At this point, the only discrepancy between bulk 

experiments and single-molecule is release due to GSH exposure [63], however, this 

deviation may be due to the bulk experiment using 37-mer DNA as compared to the  

24kbp ½ λ –DNA used in this study. The larger DNA molecule may lead to a more 

highly aggregated complex with the G2-TETA particles buried within the bulk, thus 

preventing ligand exchange upon binding. Thus far our work suggests that G2-TETA 

nanoparticles stably bind DNA and may be efficient in protecting it in various 

biologically relevant environments.  

3.4 Discussion 

Our single molecule studies have elucidated two dynamic condensation 

mechanisms: G2-TETA undergoes electrostatic association, followed by hydrophobic 

collapse and PEI condenses DNA into a complex that varies from undercharged to 

overcharged state. Mechanically, in both pathways, dynamic initial binding profiles are 

characterized by the appearance of force plateaus followed by a return of the relaxation 

curve to WLC mechanics. In addition, both systems have demonstrated the ability to 

form mechanically non-extensible regions. This mechanically non-decondensible region 

has important implications in the ability to provide protection to the nucleic acid and lend 

to the stability of complex, which are essential to circumvent biological barriers for 

efficient transfection [26].  
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In both systems, experiments were carried out to identify the major molecular 

level interactions that were the source of the loss of extensible length. It was found that 1 

M NaCl can restore significant a portion (93%) of the DNA:PEI contour length, and 

result in the disappearance of plateaus and hysteresis. This indicates that electrostatic 

shielding is sufficient to disrupt many of the interactions within the complex. In contrast 

the only treatment which restores a significant portion (82%) of contour length in 

DNA:G2-TETA complexes is 5% SDS ; there is no recovery under a high salt condition, 

suggesting a large contribution of hydrophobic interactions in the collapse and 

stabilization of condensates.  

Based on these results, we have proposed a mechanism for the condensation of 

DNA by G2-TETA gold nanoparticles. First there is association of the positive ligands to 

the phosphate backbone of the DNA fiber which is responsible for the appearance of the 

force plateau. As the DNA binds and neutralizes the surface charges, it may bend around 

the particles similar to DNA organization around histone octamers. This step is reflected 

in the force profile as the decrease of plateaus coupled with shortening of the molecule at 

the high block location. Electrostatically driven binding is also supported by the 

reduction in persistence length upon interaction, suggesting decreased backbone 

repulsions. Upon reduction of the molecular extension, the neutralized segments of the 

complex form hydrophobically stabilized contacts. This continues and the complex forms 

a collapsed structure that is mechanically rigid. After cationic groups are neutralized by 

binding to DNA, the hydrophobic contributions are likely due to the ethylene groups as 

well as the 8-carbon chain used as a linker from the TETA molecule to the AuNP surface.  
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Out of the systems explored here by single molecule force spectroscopy, G2-

TETA is the only gene delivery system where hydrophobic forces are the primary force 

leading to mechanical stability. These stable complexes may be disrupted as the polyplex 

comes into contact with lipid membranes, and especially phosphotidylserine, because it is 

an anionic amphiphile like SDS. Phosphatidylserine is located specifically on the 

cytosolic-side of the cell membrane. Therefore, if destabilization is specific to anionic 

amphiphiles (as suggested by the response to SDS vs. Tween 20) then destabilization of 

the molecule would only occur after internalization, release into the cytosol, and 

interaction with the inner leaflet of the cellular membrane. In this sense, release of 

nucleic acid may be targeted to occur only after internalization within in the cell. 

In order to reduce the hydrophobic character of the complexes, and take 

advantage of intracellular concentrations of gluthatione’s ability to release ligands from 

the gold core, it may be necessary to limit the length of the nucleic acid. It has been 

shown that in bulk studies, that GSH can release 37-mer DNA from cationic gold 

nanoparticles systems [92]. In light of this information, it is possible that G2-TETA may 

be much more applicable for siRNA delivery [40].  Additionally, hydrophobicity of a 

gene delivery vehicle has been demonstrated to play a role in the protection and release 

of the DNA from the endosomal vesicle, although its precise mechanism is unclear [94]. 

In contrast, PEI follows a primarily electrostatically driven condensation pathway. 

As in the case of G2-TETA, initially at low concentrations (1 nM), PEI binds DNA via 

columbic attraction and induces local bending. Accumulation of bending, looping and 

bridging results in tension along the DNA backbone which manifests itself as force 

plateaus. As the complex nears net neutrality, force plateaus increase to a maximum 
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value due to the minimization of columbic repulsion (concentrations between 1nM and 5 

nM) and maximal van der Waal’s interactions. At concentrations beyond this net neutral 

point, further accumulation of PEI along the backbone results in an overcharged complex, 

where the columbic repulsion minimizes (5 nM) or even eliminates (10 nM) the plateau 

force.  Shortened contour length is likely a combination of electrostatic attraction, 

stabilized by hydrophobic interactions between neutralized ethylene portions of the PEI 

polymer which are allowed to form due to the absence of electrostatic repulsion from 

either DNA-DNA or PEI-PEI; resulting in a rigid complex which is able to be partially 

decondensed by high salt condition.  

Comparison of these two systems to DNA condensed with poly-L-lysine (PLL) or 

branched histidine-lysine (HK) peptide show some key mechanical differences [88]. 

Firstly, HK and PLL condensed DNA do not show the rapid increase, maximization and 

decrease of plateau forces: condensation by either peptide shows the appearance of 

stretching and relaxation plateaus that are stable at the maximum value in the presence of 

free peptide. For HK, the relaxation plateau occurs 6.6 ± 0.4 pN, and similarly PLL is at 

8.1 ± 1.4 pN. Additionally, we note that in the PLL and HK systems, that loss of 

extensible length is not formed with peptide alone. DNA:PLL complexes did not undergo 

this phenomena at all; however, for HK system, Zn2+ chelation by the histidine residues 

was able to provide  mechanically rigid interactions.  

The data reported has several implications for gene delivery especially in the role 

of balancing protection and release, which are essential functions of a successful gene 

delivery vehicle [95]. Among PEI, G2-TETA, PLL, HK, multivalent cations, and the 

PAMAM dendrimer, PEI has been shown to exert the most force on DNA during the 
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process of condensation based on the observed plateau forces and the amount of work 

required to extend the condensed complex (Table 1) [44-46, 88]. Additionally, bound PEI 

resists washing, similar to what is observed for the PAMAM dendrimer [46]. In contrast, 

PLL and HK demonstrate a decrease of plateau forces when washed, and multivalent 

cations showed an immediate transition back to WLC mechanics when washed [44, 88]. 

The increased interaction forces and the resistance to washing suggest that PEI in 

interacting with DNA in a stronger manner than the other systems. This may be partly 

due to the high charge density and branched structure of PEI. A 25 kDa PEI molecule 

contains ~580 monomer subunits, therefore having a maximum potential of a +580 

charge. In comparison, at full protonated form PLL may only reach a maximum charge of 

+19, and HK can achieve up to a +117. Competition with RNA can partially destabilize 

complex as well, however, complexes formed using branched PEIs showed increased 

resistance to dissociation as compared to linear PEI, demonstrating the role of total 

charge and geometry on the complex stability [90]. Additionally, the change in PEI:DNA 

mechanics upon protonation suggest that PEI may facilitate escape via the proton sponge 

theory; furthermore, the ability to induce a mechanically rigid complex at low pH may 

allow for increased protection of the DNA in the endosome.  

 
Geometry # of 

Amines/Molecule 
Maximum Stretch 
Plateau Force (pN) 

kBT/bp Required 
for Stretching 

PLL Linear 19 12.6 ± 1.6 1.05 ± 0.14 
HK Branched 117 11.2 ± 0.7 1.11 ± 0.07 
G2-
TETA Branched 960 9.1 ± 3.9 1.25 ± 0.31 

PEI Branched 580 27.2 ± 11.5 2.93 ± 0.25 
Table 1. Summary of Carrier Properties and Mechanical Features.  
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In terms of nucleic acid release, we have demonstrated that PLL/HK/PEI 

complexes can be destabilized via electrostatic competition. In the bloodstream and 

cellular milieu, many molecules may act as efficient competitors. In bulk, PEI complexes 

have been disrupted using salt, heparin, and BSA.[90] Also, cellular components such as 

glycosaminoglycans and serum albumin compete with DNA to bind to polycations [11]. 

However, due to its stronger interaction, PEI may be more resistant to washing off during 

still provide adequate protection in extracellular and cytosolic environments. Thus, the 

single molecule mechanics suggest that release of the DNA may be a rate limiting step 

for transfection. Previous studies on the localization and state of DNA do show that DNA 

localized in the nucleus remains bound to PEI, which may limit the DNA’s ability to be 

biologically active [21, 22, 96]. In this sense, the interactions between PEI and DNA may 

still need optimization. Indeed studies have shown improvement in transfection 

efficiency when PEI has been partially acetylated, thus reducing the maximum charge 

achievable [32]. Careful modulation of binding affinity to facilitate release may be a key 

component to achieving maximum transfection efficiency of DNA:PEI complexes.  

 

3.5 Conclusion 

This work highlights the necessity of a gene delivery vector to be dynamic in 

nature, both providing stability, yet the ability to release nucleic acid in the appropriate 

location. However, at this point, the mechanism for release of long DNA (in the process 

of intracellular trafficking) from the nanoparticles is unclear, and the surface properties of 

G2-TETA may need to be modulated prior to condensation in order for it to perform as 

an efficient gene delivery vector for DNA.    
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Modulation of DNA:PEI mechanics is achieved via ionic strength, protonation 

state, and competition by heparin. Using single molecule force spectroscopy, we are able 

to identify two independent methods for providing DNA condensates with stability, as 

well as identify the processes required to trigger release of nucleic acid.  This body of 

work also demonstrates how single molecule methods may be utilized for pre-screening 

of gene delivery agents to identify potential roadblocks and rate limiting behavior prior to 

in vivo studies.  
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4 Guanidinylated Triblock Copolymer Shows Sensitivity to 

Ionic Environments Compared to Base Copolymer 

4.1 Introduction 

Gene therapy has great potential for preventing and treating hereditary diseases 

such as cystic fibrosis or cancer [26]. A therapeutic gene must be packaged and protected 

as it travels from the bloodstream to the cell, and be released inside the cell to reach the 

nucleus. This pathway has many extracellular and intracellular obstacles requiring 

protection of the nucleic acid from degradation, cumulating in the ultimate challenge of 

DNA release to allow for transcription and further processes once the DNA is within the 

nucleus. 

The progress of gene therapy research has been limited by development of a safe 

and effective delivery vehicle. Vectors carry DNA through physiological mediums and 

are classified as either viral or non-viral. Viral vectors, such a retroviruses and 

adenoviruses, integrate their payload into the cell genome for gene expression but have 

unpredictable immune responses, which has limited studies primarily to the animal 

testing stage and preventing advances in human clinical trials [86, 97]. Fortunately, non-

viral vectors may be tailored to minimize specific immune responses while also offering 

larger-scale synthesis and easier manipulation for different chemical functionality [97]. 

Cationic polymers, such as gold nanoparticles and polyethylenimine (PEI), have proven 

to be successful for DNA condensation but have yet to overcome low transfection 

efficiency or high cytotoxicity, respectively [30]. Peptides have also been explored as 

potential gene delivery agents because of their biocompatibility and well-controlled 
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synthesis process [98]. More specifically, lysine and arginine containing peptides have 

been of interest because they are basic amino acids, capable of assuming positive charge 

at neutral pH, and they are very hydrophilic. Cationic nature carriers have been shown to 

effectively condense DNA [46, 88], and ionizability is thought to be an important aspect 

in endosomal escape, a major barrier to entering  the nucleus of a cell [98, 99]. 

In this study, we investigated two copolymer vectors. The base copolymer used is 

a block copolymer are composed of a hydrophobic poly(ε-caprolactone) (PCL) block 

which is attached via a disulfide bond, a tetraethylenepentamine (TEPA) decorated poly 

(glycidyl methacrylate) (PGMA) which is combined with oligo(ethylene glycol) 

monomethyl ether methacrylate (OEGMA) developed by the Pun group at the University 

of Washington[41]. We also used a guanidinylated copolymer which maintains the same 

composition of the base copolymer, but where 89% of the primary amines in TEPA have 

been converted to guanidine groups [42]. Both polymers showed comparable transfection 

efficiency to a 25 kDa branched polyethylenimine, with the guanidinylated copolymer 

outperforming the other two in vitro in both Hela and PC-12 cell lines [42].  

  Our method utilizes optical tweezers, which can simulate assorted physiological 

conditions via a microfluidic chamber where DNA condensation occurs. DNA is tethered 

between two beads, one trapped by tightly focused laser beams and the other held 

stationary by a pipette tip [49]. As the laser beams oscillate to stretch or relax DNA, 

changes in distance and force as small as 1 nm and 1 pN, respectively, are detected and 

recorded in force-extension curves [100]. With exquisite control of the system and 

sensitive measurements, we can quantify the forces and define the intermolecular 
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interactions involved in DNA condensation, and just as importantly, the process of DNA 

decondensation. 

4.2 Materials and methods 

4.2.1 Materials 

Streptavidin (SA)-coated beads (2.1-µm nominal size, Spherotech, Lake Forest, 

IL) and anti-digoxigenin (AD)-coated beads (4.26-µm nominal size, Spherotech, Lake 

Forest, IL) are tethered to a double end-labeled ½ λ DNA construct was synthesized by 

the methods described in Chapter 2.  

4.2.2 Polymer synthesis and preparation 

Synthesis of the base copolymer and the guanidinylation process have both been 

previously described [41, 101], and the structures are shown in figure 1.3. Both base and 

guanidinylated copolymer were developed, synthesized and generously donated by the 

Pun Laboratory at the University of Washington. To make 1 mM stock solutions, the 

lyophilized copolymer is dissolved completely in water. Then, using 1M HCl, the pH is 

adjusted to ~6.4. The stock solution is stored at 4° C.  

4.2.3 TCEP pretreatment of copolymer 

To explore the role of the hydrophobic group, the triblock copolymers were pre-

incubated with 50 molar equivalents of tris(2-carboxyethyl)phosphine (TCEP, Sigma 

Aldrich, St. Louis, MO)  for 24 hours. Before use, the treated solution is centrifuged for 

10 minutes at 16,000 × g. The supernatant is removed and diluted for use in the 

experiments. Further testing of the complex condensation and response is tested as 

described above.   

4.2.4 Complex preparation in the microfluidic chamber 
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For this study, custom built optical tweezers were employed to directly record real 

time changes in the interaction forces between DNA and carrier [66]. Before the pulling 

experiment, the beads are first blocked for 20 minutes with 5 mg/mL BSA and 0.1% 

Tween20. After incubation, beads are centrifuged, the supernatant containing excess BSA 

is removed, and the beads are resuspended in a buffer containing 10 mM Tris, 150 mM 

NaCl, and 0.05% sodium azide, pH 7.4. AD beads are then incubated with ½λ DNA for 

10 minutes. The SA beads are trapped on a micropipette tip and remain stationary during 

the course of the experiments. AD beads are held and manipulated by the optical trap. A 

dsDNA tether is created by moving the AD bead into close proximity to the SA bead and 

allowing the biotin-labeled end to bind to the SA beads. The presence of a single DNA 

molecule between the beads was confirmed by overstretching region at ~65 pN or by 

fitting with the Marko-Siggia worm-like chain model [52]. The beads are separated by a 

~5.5 µm block distance imposed by the optical trap which prevents loop formation or the 

beads from touching or allowing nonspecific adsorption of DNA onto the bead surfaces. 

The pulling experiments were conducted with a pulling rate of 500 nm/sec. The data 

collection rate was 100 Hz and no data smoothing was performed.  

100 nM copolymer solution in 10 mM Tris buffer (150 mM NaCl, 0.05% azide, 

pH 7.4) is injected into the chamber at a rate of 5 µL/min. During injection, a block 

location of 5.5 µm is maintained. After 100 µL has been injected, the block location is 

reduced by 500 nm increments and the complex is allowed adequate time to form a 

steady state at each location.  

4.2.6 Destabilizing conditions to disrupt condensed DNA complexes 
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To change buffer conditions within the chamber, the complex is washed with 100 

µL of a buffer, at a rate of 10 µL/min.  With a channel volume of ~30 µL and the 

presence of laminar pressure driven flow, washing with ~3 times the channel volume is 

sufficient for complete solution exchange.  

5 mM glutathione (GSH) (Sigma Aldrich, St. Louis, MO), 5 mg/mL heparin 

(Sigma Aldrich, St. Louis, MO), 1 M NaCl, or a combination of the aforementioned in 10 

mM Tris buffer (150 mM NaCl, 0.05% azide, pH 7.4) are used to test complex stability. 

To test pH response, 10 mM acetate buffer (150 mM NaCl, 0.05% azide, pH 5) is 

injected into the chamber.  

4.3 Results 

4.3.1 Base copolymer exhibits dynamic condensation of DNA 

Similar to what has been previously seen for DNA condensation by G2-TETA 

nanoparticles, the base copolymer shows a dynamic two-step condensation process 

accompanied by the formation of a mechanically non-extensible region. First, indicators 

of binding are the appearance of plateaus (Figure 4.1a). The stretching plateau was 

observed at 26.1 ± 9.8 pN (n=11) and the relaxation plateau was calculated to be 14.3 ± 

12.0 pN (n=11); these force profiles show a large standard deviation due to transient and 

non-steady state nature of plateaus. At these plateau values, the energy required to extend 

the complex is 2.04 ± 0.47 𝑘𝑘𝐵𝐵𝑇𝑇 per base pair (bp). Within a few stretch-relax cycles, 

continued injection leads to the disappearance of plateaus associated with a limited 

extension of the complex. During this process, the observed hysteresis disappears and the 

relaxation curve returns to worm-like chain behavior with a measured persistence length 
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of 46.1 ± 0.3 nm (n=2). On average, at the 5.5 µm block location, the contour length 

decreases 1.1 ± 0.6 µm (n=11).   

 

Figure 4.1 (a) Force vs. extension profiles during injection and (b) after completed 
injection of 100 µL of 100 nM base copolymer. In both, the force vs extension curve of 
naked DNA is shown in black. (a) Injection of base copolymer first induces a force 
plateau which then decreases as the complex reduces its extensible length and hysteresis 
is minimized (d) Sequential movements of the block location (from 5.5 µm to 2.0 µm) by 
500 nm increments resulted in continued decrease in extension, as well as the appearance 
of a rigid region in the complex at extensions less than 4 µm.  

 
These force profiles allows us to observe initial binding exerting tension 

manifested as appearance of force plateaus, rapid increase of the plateau force and then a 

gradual decrease of these forces with a decrease of extension. This behavior of reaching 

maximal plateau force and then its decrease is analogous to overcharging behavior as 

described for DNA:PEI complexes in Chapter 3.  
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As the block location is reduced in 500 nm increments from 5.5 µm to 2.0 µm, the 

complex’s extensible length decreases as the block is reduced (Figure 4.1b). At the final 2 

µm block location, the contour length had been reduced to 5.2 ± 1.1 µm (n=8), and the 

relaxation curve maintains WLC shape and a persistence length of 46.8 ± 1.3 nm (n=7). 

Sawtooth patterns at lower block locations in the stretching curve may indicate unfolding 

events of either kinks or loops along the DNA introduced by the bound copolymer. The 

fact that the relaxation curve retains a worm-like chain shape indicates that these binding 

events take place after the DNA is relaxed. Apparent shortening after the block is shifted 

indicates that the multiple bridging interactions formed could not be disrupted by forces 

up to 50 pN. 

Additionally, in many cases (30%) a negative repulsive force was observed at the 

lower block locations, indicating the formation of a rigid aggregate between the beads 

(Figure 4.1b). This phenomena was also observed for DNA condensed with the 

hydrophobic cancer drug kahalalide F [58].  

4.3.2 Simultaneous perturbation of hydrophobic and electrostatic interactions are 

required for destabilization of DNA:base copolymer 

Next, stability and response of the condensed DNA:base copolymer complex to 

external changes of environment was probed. The base copolymer complex is resistant to 

perturbation by the exposure of condensed complex to acetate buffer (10 mM, 150 mM 

NaCl, 0.05% azide, pH 5), 1 M NaCl, 5 mg/mL heparin, or 5 mM glutathione (GSH). 

(not shown). GSH was expected to show a loss of the hydrophobic block leading to ease 

of destabilization so it was surprising not to see any noticeable changes. However, the 

complexes are disrupted by the combination of either 5 mM GSH and 1 M NaCl solution 
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or 5 mM GSH and 5 mg/mL heparin solution. The combination of 1M NaCl and 5 mM 

GSH was able to restore the contour length to 7.3 ± 1.2 µm (Figure 4.2a) (n=3). This 

accounts for 60.1 ± 39.1% restoration of the contour length lost. The final profiles 

maintained WLC characteristics and in two cases the final value of the persistence length 

was decreased as compared to naked-DNA mechanics (16.3 & 17.0 nm), and in the third 

case the persistence length returned to DNA-like mechanics (46.9 nm). This result 

indicates that the simultaneous disruption of electrostatic bonds and reduction and 

removal of the hydrophobic region was necessary to destabilize the complex and allow 

unpackaging of the DNA. Additionally, the two instances of depressed persistence length 

suggests that some of the bound copolymer may be resistant to washing in high salt 

conditions. Remaining cationic polymer still bound to DNA would induce local bending 

thus decreasing the measured persistence length [69]. Depending on the actual number of 

molecules bound to the DNA fiber, we can expect some variation in the final persistence 

length achieved.  

Similarly, the combination of 5 mg/mL heparin and 5 mM GSH was also able to 

restore the contour length to 7.1 ± 1.4 µm, or restoration of 62.0 ± 23.0% of total contour 

lost (Figure 4.2b) (n=3). In contrast to the GSH and salt combination, in all three 

experimental runs, destabilization with GSH and heparin allowed for the persistence 

length to return to 46.6 ± 0.2 nm (n=3). Comparison of this data to the GSH and salt data 

indicates that heparin may be more effective at removing bound copolymer as compared 

to salt. This is likely due to the multivalency of heparin, which will compete with DNA 

efficiently due to its high negative charge density.  
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Figure 4.2 Mechanical destabilization of the DNA:base copolymer complex. 
Recovery of extension for the DNA:base copolymer complex (black) was achieved upon 
washing with 10 mM tris buffer containing (a) 1 M NaCl and 5 mM GSH or (b) 5 mg/mL 
heparin and 5 mM GSH.  

 

4.3.3 TCEP pretreatment of base copolymer allows for electrostatic modulation of 

mechanical properties 

Pre-incubation of the base copolymer with TCEP has been shown to be effective 

for the reduction of the disulfide bond and removal of the hydrophobic PCL block [41]. 

Condensation of the DNA with 100 nM TCEP-treated base copolymer also displays 

dynamic plateau behavior. Again continued injection leads to maximization of the plateau 

forces, and then a decrease back to worm-like chain behavior. Additionally, some loss of 

extensibility is observed, with an average of 0.7 ± 0.3 µm shortening at the 5.5 µm block 

location (n=3). Reduction of the block to the 2 µm location did not result in reduction of 

extensible length and maintained contour length of 5.7 ± 1.2 µm (n=6), similar to the 

value when compared to the complex formed without TCEP pretreatment (Figure 4.3a, 

blue). It is of note that the hydrophobic region is not required to form the mechanically 

non-extensible region of the complex; the TEPA-OEGMA statistical block can form 

interactions with the DNA that require > 50 pN force to disrupt.  
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When the condensate is washed with 1 M NaCl, expansion of the complex to 6.9 

± 1.0 µm (65.4 ± 30.4% of lost contour restored) (n=5) is observed, and any hysteresis is 

removed (Figure 4.3a, cyan). The final persistence length of the salt destabilized complex 

is 46.2 ± 1.1 nm (n=5). Further cycling of salt concentration to 150 mM shows return of 

hysteresis and shortening to a very short rigid complex; again cycling back to 1 M salt 

recovers full length of the complex (Figure 4.3b). These data indicate that base 

copolymer or the TCEP-treated copolymer can overcharge complex and that electrostatic 

interactions are sufficient for MND formation. Additionally, we observe that TCEP 

pretreated base copolymer is resistant to high salt washing which is in direct contrast to 

what is observed for multivalent cations and cationic peptides [44, 88]. 

 

 

Figure 4.3 a) Representative force profile of DNA condensed with TCEP-pretreated 
base copolymer is shown (blue). Washing with 1 M NaCl restores contour length and 
worm-like chain mechanics (cyan). b) Contour length of a single molecule of DNA as is 
it condensed with TCEP-treated base copolymer, washed with 1 M NaCl, returned to tris 
buffer, and cycled back to 1 M NaCl wash.  

 

Unlike its triblock counterpart, TCEP-treated base copolymer, which had been 

high salt washed, does show a mechanical response when the pH is decreased from pH 
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7.4 to pH 5 (Figure 4.4a). The response to the pH drop included an appearance of 

plateaus, hysteresis, and sawtooth accompanied by decrease in extension. These changes 

are attributed to protonation of the secondary amines in the copolymer leading to 

increased charge density (and likely binding affinity).  Enhanced condensation forces due 

to protonation has been previously observed in the case of the histidine-lysine based 

polymer [88]. Cycling the buffer back to the original 10 mM tris buffer (pH 7.4, 150 mM 

NaCl, 0.05% azide) deprotonates the copolymer, removes hysteresis, and returns the 

DNA strand back to WLC mechanics (Figure 4.4b). The ability to reversibly modulate 

the extensible length via the copolymer’s protonation state demonstrates that electrostatic 

interactions are a key contributor to mechanical stability of the complex.  

 

Figure 4.4 a) A force profile of DNA condensed with TCEP-pretreated base 
copolymer the washed with high salt condition is shown (black). Hysteresis indicate 
that some copolymer is bound. Using 10 mM acetate (150 mM NaCl, 0.05% azide) to 
change the environment to pH 5 led to increased hysteresis and shortening of the complex 
(red). Intermediate curve is indicated in dark red. b) This behavior was reversible by 
washing with 10 mM tris buffer pH 7.4 (150 mM NaCl, 0.05% azide) (blue). 
Intermediate curve is indicated in purple.  

 

4.3.4 Guanidinylated copolymer exhibits maximal plateaus during condensation  

Condensation of DNA with 100 nM of the guanidinylated copolymer also 

exhibited dynamic condensation behavior (Figure 4.5a). Shortly after injection of the 
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condensing agent, both stretching and relaxation plateaus reach their maximum values of 

23.4 ± 5.1 pN and 9.2 ± 3.4 pN respectively (n=6); the energy required for extension at 

this point is 1.90 ± 0.32 𝑘𝑘𝐵𝐵𝑇𝑇 per bp. The plateaus then decreased and worm-like chain 

behavior is re-established in the relaxation curve. As the block location is decreased, the 

complex does lose some extensible length, arriving to a final contour length of 5.6 ± 1.5 

µm (n=6) which is similar to that achieved by base copolymer complexes (Figure 4.5b). 

None of the DNA:guanidinylated copolymer complexes displayed the repulsive 

interactions observed for the DNA:base copolymer complexes.  

 

Figure 4.5 (a) Force vs. extension profiles during injection and (b) after completed 
injection of 100 µL of 100 nM guanidinylated copolymer. In both, the force vs 
extension curve of naked DNA is shown in black. (a) Injection of guanidinylated 
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copolymer first induces a force plateau which then decreases as the complex reduces its 
extensible length and hysteresis is minimized. (b) Sequential movements of the block 
location by 500 nM resulted in continued decrease in extension. 

 

5.3.5 1 M NaCl destabilizes DNA:guanidinylated copolymer complexes 

 When the complex is exposed to tris buffer containing 5 mM GSH, no changes in 

force profiles is observed (data not shown). However whereas DNA:base copolymer 

complexes did not respond to high salt conditions, the loss in contour length of 

DNA:guanidinylated copolymer complexes during copolymer injection is restored with 1 

M NaCl alone, resulting in an extensible length of 6.9 ± 1.0 µm (Figure 5.6) (n=5). This 

contour corresponds to restoration of 77.2 ± 19.6% of total length lost. In the 

guanidinylated system, the concurrent presence of GSH is not necessary to see 

destabilization of the condensed DNA complexes.  

 

Figure 4.6 Electrostatic destabilization of the DNA:guanidinylated copolymer 
complex. Recovery of extension for the DNA:guanidinylated copolymer complex (black) 
was achieved upon washing with 10 mM tris buffer containing 1 M NaCl. 

 

 After the high salt wash, returning the complex to tris buffer environment (150 

mM NaCl), retains the WLC force profile, indicating that the concentration of bound 
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polymer has been reduced. However, it is demonstrated that not all the polymer is 

removed because exchanging the buffer to acetate buffer, pH 5, gives new binding events 

and induces significant reduction in extensible length, forming very rigid complex 

(contour = 3.8 ± 1.1 µm, n=1) (Figure 4.7a). To test whether this process was reversible 

and the interactions were still dominantly electrostatic, the complex was washed back 

into tris buffer, pH 7.4. The reduction in extensible length was completely reversible and 

contour length prior to acetate exposure was fully regained (Figure 4.7b). These data 

suggest limited role of the hydrophobic block in stabilization of the condensate. 

 

Figure 4.7 Guanidinylated copolymer complex exhibits a pH response. a) After 
condensation with guanidinylated copolymer the complex was washed with high salt 
condition and the resulting force profile is shown (black). Using 10 mM acetate (150 mM 
NaCl, 0.05% azide) to change the environment to pH 5 led to increased hysteresis and 
shortening of the complex (red). Intermediate curves are shown with arrows showing 
progression of condensation. b) This behavior was reversible by washing with 10 mM tris 
buffer pH 7.4 (150 mM NaCl, 0.05% azide) (blue). Intermediate curve are shown in 
purple showing expansion and return to WLC mechanics. 

 
4.3.6 TCEP-treated guanidinylated copolymer shows resistance to washing in ionic 

environments 

To further probe the role of the hydrophobic PCL block on the guanidinylated 

copolymer, TCEP pretreatment was performed prior to condensation. Again, the 
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appearance and disappearance of plateaus after reaching maximal plateau force of 20.9 ± 

0.2 pN (n=2) in the stretch and the relaxation plateau was 9.1 ± 4.9 µm (n=2) was 

observed. However, it is important to note that this number is skewed downwards 

because we also observed the case where the plateaus were high enough to demonstrate 

considerable shortening which made calculation of the plateau value was not possible. 

Additionally, the complex showed reduction in extensible length to 6.1 ± 0.7 µm (n=3) at 

the high block location. Similar to the guanidinylated triblock copolymer, the diblock 

remained mostly extensible, retaining contour lengths of 4.9 ± 1.8 µm (n=2) at the 2 µm 

block location (Figure 4.8a, blue). Significant contour length that was lost as the block 

was moved from 5.5 µm to 2 µm block was recoverable by 1 M salt (Figure 4.8a, cyan). 

However, while 1 M NaCl was sufficient to recover full extensible length, some 

hysteresis remained. When the salt concentration is further increased to 2 M the 

hysteresis is completely removed, indicating that higher salt is required to show WLC 

behaviors (Figure 4.8a, green). 

 

Figure 4.8 a) Representative force profile of DNA condensed with TCEP-pretreated 
guanidinylated copolymer is shown (blue). Washing with 1 M NaCl restores contour 
length, however, hysteresis remains (cyan). 2 M NaCl further restores contour length and 
returns the fiber to WLC mechanics with no hysteresis (green). b) Representative force 
profile of DNA condensed with TCEP-pretreated guanidinylated copolymer is shown 
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(blue). Washing with 5 mg/mL heparin restores contour length and is able to remove 
hysteresis (cyan).  

Analogously, instead of using high salt conditions, 5 mg/ml heparin can also 

reverse shortening and return the DNA to a WLC shaped profile (Figure 4.8b, cyan). As 

compared to the TCEP-treated base copolymer, more stringent conditions are required by 

TCEP-treated guanidinylated copolymer suggesting enhanced high force interactions and 

resistance to washing.  

 

4.4 Discussion 

Stimuli-responsive gene delivery vehicles have been designed to tackle the 

bottlenecks of stability, endosomal escape, and payload release [102]. Additionally, the 

incorporation of guanidine groups has been demonstrated to be efficient at delivering 

drugs and nucleic acids intracellularly due to enhanced DNA binding affinity, and the 

charged group’s propensity to interact with cell surface phosphates and sulfates enables 

improved uptake and internalization of complexes [103-106].  In this work, we compared 

the mechanical properties of DNA condensed with either a triblock copolymer previously 

developed for in vivo gene delivery [41] or its guanidinylated counterpart. Both 

copolymers exhibited similar condensation dynamics and formation of complexes with 

mechanically rigid regions. Key features of the condensation process include plateau 

appearance, maximization, and reduction, which is likely to be correlated with charged 

state of the DNA complex. Formation of a mechanically non-extensible region is 

proposed to be due to long range intramolecular interactions of the complex that forms as 

different parts of the complex approach each other during stretch-relaxation cycles.   
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Figure 4.9 Contour length as a function of condensing agent and condition. (Tukey 
honest significance difference test, *p < 0.05, **p < 0.01) 

The differences between the two structures become apparent when probing 

stability with respect to changes in environment, summarized in Figure 4.9. Base 

copolymer shows a combination of both hydrophobic and electrostatic stabilization of 

condensed complex, since it responded only when combination of salt and GSH was 

used. In contrast, guanidinylated copolymer displayed limited hydrophobic contributions 

and was largely destabilized by high salt conditions. This behavior is surprising, as the 

hydrophobic block content is approximately the same (15-16% by molecular mass) for 
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each variation of the polymer. At this moment we hypothesize that this phenomenon may 

be due to differences in condensate structure due to different binding processes between 

base copolymer and guanidinylated copolymer. It has been shown that DNA condensed 

with base copolymer forms spherical polyplexes, however more studies need to be 

performed to determine whether or not they are forming micelles [41, 42].  Recent studies 

reported that lysine allows for cooperative assembly that is dependent on peptide length 

while arginine undergoes non-cooperative assembly for more uniform and densely 

packed DNA [107, 108].  

We hypothesized that pretreatment of the copolymers with TCEP would allow for 

mechanical properties to be manipulated via electrostatics (ionic strength and protonation 

state of the copolymer) due to the loss of the hydrophobic block. We found that this was 

indeed the case; the base copolymer’s reduced contour length could now be recovered 

without the assistance of GSH. The guanidinylated copolymer exhibited similar behavior 

to the TCEP treated base copolymer as well as the untreated copolymer. However, it is 

notable that TCEP-treated guanidine based copolymer showed resistance to washing with 

salt, and 2 M NaCl concentration was required to remove all hysteresis from the force 

profile. This may be due to enhanced interaction between the polymer and the DNA after 

removal of the hydrophobic block, which could be sterically preventing optimal binding. 

Additionally, it has been shown that poly arginine binds DNA with a higher affinity than 

poly-lysines [109-111] in part due to the protonation being resonance-stabilized.  

Recently the transfection efficiencies of these two copolymers have been reported 

[42]. In vitro, guanidine based copolymer displayed enhanced transfection, despite 

slightly increased toxicity. However, it was also demonstrated that in vivo the base 
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copolymer outperformed the guanidinylated one. This was attributed to better 

extracellular stability of the base copolymer. Based on our findings, we can conclude that 

this is likely to be the case, as complexes formed by condensation with base copolymer 

needed both GSH and salt to initiate cargo release; these conditions would be limited to 

intracellular compartments and would allow for targeted nucleic acid release in these 

specific areas, as glutathione levels are in the µm concentration in the bloodstream [112] 

but maintain millimolar levels in the cytoplasm [113]. On the other hand, 

DNA:guanidinylated complexes would be susceptible to destabilization in a blood stream 

and early unpackaging by biomolecules such as albumins and sulfated extracellular 

matrix components (heparin) would lower its efficiency in vivo.  

4.5 Conclusion 

 In this study, we compared the mechanical signatures of DNA condensed by a 

primary amine or guanidine based analogs of a triblock copolymer. While the 

representative force profiles of the complexes are similar, we identify a limited role of the 

hydrophobic block in stabilization of the DNA:guanidinylated copolymer complex. These 

differences in stability are likely responsible for the differences observed in the 

transfection efficiencies for the two polymers in vivo vs. in vitro. Single molecule data is 

able to demonstrate that the inclusion of guanidine groups in the copolymer, while 

enhancing binding to DNA, reduces the role of the PCL block in providing stability to the 

complex. This work highlights the ability of the optical tweezers to observe dynamic 

mechanical responses of condensed DNA and the potential for single molecule studies to 

be used as a method for in situ differentiation of non-viral gene delivery vectors.   
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5 Identification of Key Mechanical Criteria for Maximum 

Transfection Efficiencies 

Characterization of polyplex stability is necessary for optimization of controlled 

protection of and release of DNA for gene delivery [95]. While they are exposed to the 

extracellular milieu, nucleic acids must be protected from early release or degradation; 

within the intracellular spaces, an appropriate delivery vehicle should release the cargo in 

the cytosol or within the nucleus. An important step in the process of engineering a gene 

delivery vehicle is to correlate the mechanical properties with bulk transfection results.  

 

Figure 5.1 Efficacy of PLL vs. HK vs. PEI for transfection of a luciferase-expressing 
plasmid.  For PLL several w/w ratios were tried and the optimal ratio for HK and PEI 
were used. HK displayed much greater transfection efficiency expressing 88138.4 ± 
2362.7 and 67233.8 ± 5992.8 RLU/µg respectively as compared to 1.442 ± 1.2 RLU/µg 
for PLL at a ratio of 16:01. (n=8, ANOVA test, P < 0.01).  *Data collected by Dr. Qixin 
Leng  
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In comparing the transfections of PEI, HK peptide, and 19-mer PLL, we observe a 

large range of transfection efficiencies (Figure 5.1). At weight ratios of 8:1-16:1 PLL 

showed minimal transfection, while PEI and HK peptide were able to reach transfection 

efficiencies three orders of magnitude higher.  

At present, DNA transfection data has not been published for the G2-TETA 

nanoparticles; however, it has been shown as an efficient delivery vehicle for siRNA 

showing up to ~40% knockdown of β-gal in vitro  [40]. The utility of the gold 

nanoparticles for DNA complexation however may be questionable, as the binding of 

siRNA to lower generation nanoparticles resulted in precipitation, demonstrating that 

complexation can lead to significant van der Walls interactions and aggregation. Due to 

its increased total charge, as compared to lower generation TETA nanoparticles, G2-

TETA may be resistant to precipitation via complexation of siRNA however long DNA 

may be able to neutralize and bind a sufficient amount of nanoparticles to demonstrate 

aggregation.  

Transfection results for the base copolymer as compared to the guanidinylated 

copolymer demonstrate varying trends for transfection. In vitro assays in Hela, Z310, and 

primary neuroprogenitor cells indicated that guanidinylated copolymer enhanced gene 

transfer over polyplexes prepared using base copolymer [42]. In contrast, in vivo delivery 

to murine brains showed an order of magnitude lower level of luciferase activity 

compared to base copolymer. It was hypothesized that the presence of proteoglycans, and 

specifically, heparan sulfate which is prevalent in the extracellular matrix surrounding 

proliferating neural progenitor cells [114], may cause early dissociation of the complex.  



www.manaraa.com

 
84 

 

Key mechanical features of condensed DNA have been identified in earlier 

chapters. A large range of condensation forces have been demonstrated. All of the 

condensing agents in this body of work have been cationic in nature. Electrostatic 

interactions can range in magnitude, as we observe varying levels of condensing force 

(plateau forces) as well as force required to extend the complexes after condensation. 

While HK and PLL required the application of ~30 pN to return the complex to an 

extended conformation (Figure 2.3), maximum forces of >50 pN were unable to fully 

extend DNA:PEI (Figure 3.4) or DNA:guanidinylated complexes (Figure 4.5) despite 

their primarily electrostatically driven collapse.  

Many biological molecules are ionized, and interaction of these charged 

molecules with condensed DNA complex have been shown to lead to early disintegration 

of complexes. Extracellular species include serum albumin and polyglycans. Intracellular 

competitors include proteins and RNA in the cytoplasm, and DNA in the nuclear fraction. 

However, other intermolecular interactions may complement the electrostatic interactions 

to improve stability. Isothermal calorimetry and nuclear magnetic resonance data show 

evidence of hydrogen bonding between HK peptide and siRNA [82]. G2-TETA and the 

triblock copolymers also employ hydrophobic interactions to increase stability.  

In our single molecule studies we identified interactions that were resistant to >50 

pN of applied force. Sources of this stability were from electrostatics, hydrophobic 

aggregation, chelation of divalent metal ions, or a combination. These interaction forces 

are above what biological machinery is capable of producing, therefore active 

dissociation is unlikely. Thus this mechanically non-decondensible response should be a 
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requirement for stability in the extracellular spaces and during uptake, and through 

incorporation into the endosome.  

Upon internalization of polyplex, continued acidification of the endosome will 

lead to dynamic mechanical responses for DNA condensed by HK, PEI, or 

guanidinylated copolymer. This has been visualized as an increase in plateau forces, or 

formation of interactions which are unable to be disrupted via mechanical pulling. This 

response is desirable due to the fact that it signifies that the cationic agents retain 

functional groups that can still be protonated and suggest that the proton sponge effect 

may play a role in endosomal escape. Simultaneously, it is observed that protonation can 

increase the binding force level observed, which in turn results in greater protection of 

the nucleic acid.  

During successful transfection, the DNA must be released from the carrier 

molecules at some point. Mechanically this is represented as a disappearance of 

hysteresis, sawtooth patterns in the stretch curve, force plateaus, and return to worm-like 

chain profile. Thus, complexes such as DNA:G2-TETA or DNA:base copolymer may 

demonstrate inefficient release of the cargo as they require stringent conditions for 

disassociation.  However, naked DNA-like mechanics are not sufficient criteria with 

which to determine complete release. For instance, DNA:guanidinylated copolymer that 

has been treated with 1 M NaCl exhibits return of hysteresis and loss of extensible length 

when pH is dropped to 5, clearly demonstrating that some bound copolymer remains and 

is sufficient to produce dynamic mechanical responses. In this case, the optical tweezers 

may be an ideal instrument to measure true release of the DNA. Classical methods such 



www.manaraa.com

 
86 

 

as fluorescence or gel electrophoresis may not be sensitive enough to detect residual 

molecules bound.  

Based on the correlation of the presented single molecule findings and bulk 

transfection results, three key mechanical criteria have been identified for carriers. 

Firstly, upon condensation, the complex should stably collapse into a structure which is 

resistant to opening against 50 pN of force. Additionally, the carrier should show a 

change in mechanics associated with a drop in pH from 7.4 to 5.0, demonstrating an 

ability to buffer the endosome and provide increased level of interactions. Finally, 

intracellular conditions should return mechanics to original naked-DNA parameters; full 

release can be probed by again exposing the fiber to a pH 5.0 environment.   
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6 Future Work and Outlook 

 The work in this dissertation will motivate additional projects that will contribute 

to a more comprehensive understanding of the biophysical aspect of DNA condensation, 

leading to more informed design of gene delivery vectors. The utility of single molecular 

tweezers is realized in its real time observation of dynamic mechanical behavior of DNA 

complexes, which has not been previously reported, and the ability to probe complex 

biological systems in a simplified manner. As such, more destabilizing conditions such as 

the effects of molecular crowding on the mechanical properties of condensed DNA 

complexes can be explored. Furthermore, the optical tweezers could be used to test a 

library of agents to correlate structure and function of condensing agents.  

6.1 Role of molecular crowding 
Biomolecules such as proteins may also play a role in the biomechanical response 

of the DNA-peptide complexes. Macromolecules may occupy as much as 20-30% of the 

total volume of a cell [115]. This corresponds to ~200-300 g l-1 concentration; and even 

in blood plasma there is an approximate concentration of 80 g l-1.  Locally, charged 

proteins may act as salts, or compete to interact with the nanoplex components. 

Alternately, the crowded biological environment could deplete water molecules around 

the nanoplex and therefore further the condensation via osmotic effect. There is a need to 

examine the response to crowding to see how a carrier can overcome cytosolic conditions 

and successfully delivery nucleic acids to the nucleus.  

Our strategy is to isolate and de-convolute the complex interactions that may 

occur within the biological milieu.  
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6.1.1 Experimental approach 

The crowding effect has previously been probed by using up to 20% (w/v) BSA 

(Sigma-Aldrich) and polyethylene glycol (PEG)[116, 117]. In an analogous fashion the 

condensed DNA complexes will be exposed to 5%, 10%, 15%, and 20% BSA or PEG 

(MW 8000) at both pH 7.4 and pH 5.0. Additionally, lower molecular weight PEG may 

be used to determine the effect of co-solute size on complex stability.  

6.1.2 Expected results, interpretation, possible pitfalls   

The crowding effect may have interesting implications to the unpackaging of the 

DNA. Firstly, negatively charged proteins such as albumin, or other physiologically 

relevant molecules such as glycosaminoglycans that the polyplex may encounter, could 

potentially compete with the DNA to bind to the cations. Additionally, these charged 

complexes in the vicinity may deplete the water around the DNA molecule causing 

condensation. Finally, presence of a high concentration of negative charges may also 

cause columbic repulsion and also lead to DNA compaction. DNA compaction due to 

crowding by BSA has been previously reported [116]. However, it important to note that 

doubling the salt concentration from 100 mM to 200 mM was enough to reverse the 

compaction and unfold the DNA. It is unclear if crowding will cause disintegration of the 

complex due to competition binding to cations, or whether the high concentration and 

close proximity to these charged macroions will lead to DNA collapse. It is even possible 

that both could occur leading to compacted DNA in the absence of cationic condensing 

agent. A control experiment to obtain a force profile of DNA condensed due to depletion 

forces would need to be conducted with naked DNA in a 20% BSA solution.  
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To compare an anionic vs. a neutral crowded environment, polyethylene glycol 

will also be tested as crowding agent. Crowding with PEG has shown to be able to 

stabilize or destabilize naked DNA depending on duplex length as well as PEG size 

[117]. 

6.2 Mechanical response to biological environments 

While microfluidic setup allows for precise control of environmental conditions, 

it is also important to explore the mechanical responses of the condensed DNA 

complexes to physiologically relevant conditions. Three compartments which are 

important to test are the bloodstream, cytosol, and nuclear environments. The ideal gene 

delivery candidate should demonstrate release in the nuclear environment, yet protection 

in the other two scenarios.  

Serum, such as fetal bovine serum, can be introduced into the chamber to 

demonstrate the mechanical response of the DNA:cationic carrier complex within the 

bloodstream. Analogously, cell lysate may be used to test cytosolic stability, and Xenopus 

laevis egg extract can emulate the nuclear environment.  

Using such conditions allows for visualization of the complex mechanics and 

further screening of a carrier’s ability to protect and release the nucleic acid in the various 

biological compartments.  

6.3 Design of a new optimal transfection agent based on a library and 

screening of agents with the OT as in situ testing of novel agents 
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Key mechanical criteria for a good transfection agent have been identified in 

Chapter 5. However, at this moment, the effect that varying design parameters such as: 

total charge, size, geometry, species and distribution of amines, buffering capacity, 

interaction with other molecules, and flexibility, and optimal range will have on the 

mechanical response has not been quantified or well characterized. Our strategy is to 

directly measure condensation and disassociation forces and determine the associated 

mechanical contribution due to specific residues. Rational design of novel gene delivery 

carriers will be facilitated by systematically developing a library of peptides to address 

these design parameters and quantifying the associated change in mechanical response.   

6.3.1 Experimental approach 

Based on preliminary data collected, along with previously published single-

molecule studies, the aim is to design an appropriate peptide carrier using side groups to 

add functionality in a modular fashion.  Synthesis of the novel peptide will start out by 

comparing the behaviors of 3, 5, 10, 15, 20-mer PLL. Based on the desired washing 

behavior, the peptide with the appropriate length can be chosen. Arginine content may 

also be increased to optimize DNA binding. Additionally, incorporation of specific amino 

acids between lysine residues can add functionality. For instance, incorporation of 

histidine will make the peptide pH responsive as well as add stability through chelation of 

divalent metals. As discussed in Chapter 2, histidine may also promote extracellular 

stability through chelation.  

Increasing peptide hydrophobicity is another strategy which we can employ to 

promote polyplex stability. The nine amino acids that have hydrophobic side chains are 

glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, and 
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tryptophan. Inclusion of cysteine can incorporate reducible disulfide bonds into the 

peptide structure to allow for targeted separation of peptide in reducing intracellular 

conditions.  

Following characterization of representative force profiles of the DNA:peptide 

complex, the dynamic mechanical responses will also be tested to determine forces 

necessary to disrupt the interactions and what environmental conditions can modulate 

stability. Development of a library which can correlate structural changes to specific 

mechanical features may enable modular design of future transfections agents.  

6.4 Concluding remarks 
It has been suggested that the appropriate modulation of mechanics may be the 

key to successful gene delivery [95]. This includes providing adequate protection in 

biological compartments where DNA is subject to degradation, providing a mechanism 

for cellular uptake and endosomal escape, nuclear localization, and finally release for 

transcription. The optical tweezers are an ideal system for studying the dynamic 

mechanical behavior of these complexes. The deviation between a historically poor 

transfection agent (PLL) and a good one (PEI) have been identified. Key mechanical 

criteria have been identified for efficient transfection and development of a structure vs 

function map will facilitate the design of future transfection agents.  Design parameters 

such as: total charge, size, geometry, species and distribution of amines, buffering 

capacity, interaction with other molecules, and flexibility, and optimal range can be 

identified based on the mechanical properties and response of the DNA complexes tested. 

The hypothesis is that by designing a novel peptide which emphasizes the mechanical 
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responses demonstrated as key criteria by other delivery systems, a superior transfection 

agent will be produced.   
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7 Appendix A – Efficacy of Bovine Serum Albumin (BSA) 
Blocking 
 

 

Figure 7.1 Zeta potential measurements of SA beads with and without BSA 
blocking.  

 

Zeta potential measurements were taken to quantify the BSA’s ability to prevent 

coating of the negatively charged streptavidin or anti-digoxigenin bead surfaces with 

cationic agent. To block the beads, SA beads were incubated for 20 minutes in a 5 

mg/mL BSA and 0.1% Tween20 solution, then centrifuged for 5 minutes in a mini 

tabletop centrifuge and supernatant is aspirated to remove excess BSA.   The incubation 

process is repeated with 1 µM HK peptide, and again excess is removed by centrifugation 

and aspiration. Finally the beads are resuspended in either 10 mM tris buffer, pH 7.4, or 

10 mM acetate buffer, pH 5.  
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Zeta potential measurements were taken with a Zetasizer Nano (Malvern) and 

triplicate measurements were taken, reported as mean and standard deviation (Figure 

7.1). Using a one-way Anova, and the Tukey Honest Significance Difference tests, our 

results indicate that BSA blocked SA beads (-16.4 ± 0.5 mV) demonstrated no significant 

change in zeta potential as compared to the untreated SA beads (-16.0 ± 0.9 mV) (𝑝𝑝 =

0.05). In both samples that were BSA blocked and then incubated with HK, the zeta 

potential remained negative, though increased as compared to the control SA beads (p < 

0.05). However, we do see a much larger increase in zeta potential when the HK is 

incubated on unblocked beads, up to 4.8 ± 0.5 mV for the HK coated beads in tris, and 

17.8 ± 0.5 mV for the HK coated beads in acetate. This suggests that BSA blocking is 

indeed preventing cationic peptide from binding to the bead surfaces.  

In another control experiment, we wanted to see what force profile features would 

appear if condensation were initiated at the surface of the bead. SA beads are BSA 

blocked, and ½ λ DNA is “deposited” on SA bead by forming a tether between the AD 

and SA beads, then breaking the tether. A second set of AD beads, which have been 

incubated with 1 µM HK peptide, are used to recapture and pull the DNA fiber. The 

resulting force profiles are recorded (Figure 7.2). The force profiles remain worm-like 

chain in the relaxation, but show hysteresis in the stretch curve and a few large stick slip 

unbinding events.  

The same experimental procedure is then repeated with AD beads that have been 

incubated with 5 mg/mL BSA and 0.1% Tween20 solution, washed and then incubated 

with 1 µM HK. During interaction with 5 different coated beads, no hysteresis was 

observed and the fiber maintained naked DNA mechanics (Figure 7.3).  
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Figure 7.2 Force vs. extension curves of DNA pulled with HK coated AD beads.  

These experiments demonstrate again that BSA inhibits binding of HK to bead 

surface. Additionally, we did not see the formation of plateaus when DNA interacted 

with HK coated beads; thus suggesting that experimental data showing plateau behavior 

is not likely nucleating on the bead surface.  
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Figure 7.3 Force vs. extension curves of DNA pulled with HK incubated AD beads 
that were pre-blocked with BSA. 

  



www.manaraa.com

 
97 

 

Bibliography  
1. Vile, R.G., S.J. Russell, and N.R. Lemoine, Cancer gene therapy: hard lessons 

and new courses. Gene Therapy, 2000. 7(1): p. 2-8. 
2. Kerr, D., Clinical development of gene therapy for colorectal cancer. Nature 

Reviews Cancer, 2003. 3(8): p. 615-622. 
3. McNeish, I.A., S.J. Bell, and N.R. Lemoine, Gene therapy progress and 

prospects: cancer gene therapy using tumour suppressor genes. Gene Therapy, 
2004. 11(6): p. 497-503. 

4. Yin, H., R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin, and D.G. 
Anderson, Non-viral vectors for gene-based therapy. Nature Reviews Genetics, 
2014. 15(8): p. 541-555. 

5. Nguyen, J. and F.C. Szoka, Nucleic Acid Delivery: The Missing Pieces of the 
Puzzle? Accounts of Chemical Research, 2012. 45(7): p. 1153-1162. 

6. Tachibana, R., H. Harashima, N. Ide, S. Ukitsu, Y. Ohta, N. Suzuki, H. Kikuchi, 
Y. Shinohara, and H. Kiwada, Quantitative analysis of correlation between 
number of nuclear plasmids and gene expression activity after transfection with 
cationic liposomes. Pharmaceutical Research, 2002. 19(4): p. 377-381. 

7. James, M.B. and T.D. Giorgio, Nuclear-associated plasmid, but not cell-
associated plasmid, is correlated with transgene expression in cultured 
mammalian cells. Molecular Therapy, 2000. 1(4): p. 339-346. 

8. Zuidam, N.J. and Y. Barenholz, Electrostatic parameters of cationic liposomes 
commonly used for gene delivery as determined by 4-heptadecyl-7-
hydroxycoumarin. Biochimica Et Biophysica Acta-Biomembranes, 1997. 
1329(2): p. 211-222. 

9. Kawabata, K., Y. Takakura, and M. Hashida, The Fate of Plasmid DNA after 
Intravenous-Injection in Mice - Involvement of Scavenger Receptors in Its 
Hepatic-Uptake. Pharmaceutical Research, 1995. 12(6): p. 825-830. 

10. Mumper, R.J. and A.P. Rolland, Plasmid delivery to muscle: Recent advances in 
polymer delivery systems. Advanced Drug Delivery Reviews, 1998. 30(1-3): p. 
151-172. 

11. Ruponen, M., S. Yla-Herttuala, and A. Urtti, Interactions of polymeric and 
liposomal gene delivery systems with extracellular glycosaminoglycans: 
physicochemical and transfection studies. Biochimica Et Biophysica Acta-
Biomembranes, 1999. 1415(2): p. 331-341. 

12. Mislick, K.A. and J.D. Baldeschwieler, Evidence for the role of proteoglycans in 
cation-mediated gene transfer. Proceedings of the National Academy of Sciences, 
1996. 93(22): p. 12349-12354. 

13. Ghinea, N. and M. Hasu, Charge Effect on Binding, Uptake and Transport of 
Ferritin through Fenestrated Endothelium. Journal of Submicroscopic Cytology 
and Pathology, 1986. 18(4): p. 647-659. 



www.manaraa.com

 
98 

 

14. Wiethoff, C.M. and C.R. Middaugh, Barriers to nonviral gene delivery. Journal of 
Pharmaceutical Sciences, 2003. 92(2): p. 203-217. 

15. Rehman, Z.u., D. Hoekstra, and I.S. Zuhorn, Mechanism of polyplex-and lipoplex-
mediated delivery of nucleic acids: real-time visualization of transient membrane 
destabilization without endosomal lysis. ACS Nano, 2013. 7(5): p. 3767-3777. 

16. Zhang, Z.Y. and B.D. Smith, High-generation polycationic dendrimers are 
unusually effective at disrupting anionic vesicles: Membrane bending model. 
Bioconjugate Chemistry, 2000. 11(6): p. 805-814. 

17. Klemm, A.R., D. Young, and J.B. Lloyd, Effects of polyethyleneimine on 
endocytosis and lysosome stability. Biochemical Pharmacology, 1998. 56(1): p. 
41-46. 

18. Sonawane, N.D., F.C. Szoka, and A. Verkman, Chloride accumulation and 
swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. 
Journal of Biological Chemistry, 2003. 278(45): p. 44826-44831. 

19. Pollard, H., G. Toumaniantz, J.L. Amos, H. Avet-Loiseau, G. Guihard, J.P. Behr, 
and D. Escande, Ca2+-sensitive cytosolic nucleases prevent efficient delivery to 
the nucleus of injected plasmids. Journal of Gene Medicine, 2001. 3(2): p. 153-
164. 

20. Pollard, H., J.S. Remy, G. Loussouarn, S. Demolombe, J.P. Behr, and D. Escande, 
Polyethylenimine but not cationic lipids promotes transgene delivery to the 
nucleus in mammalian cells. Journal of Biological Chemistry, 1998. 273(13): p. 
7507-11. 

21. Breuzard, G., M. Tertil, C. Goncalves, H. Cheradame, P. Geguan, C. Pichon, and 
P. Midoux, Nuclear delivery of NFκB-assisted DNA/polymer complexes: plasmid 
DNA quantitation by confocal laser scanning microscopy and evidence of nuclear 
polyplexes by FRET imaging. Nucleic Acids Research, 2008. 36(12): p. e71-e71. 

22. Cohen, R.N., M.A. van der Aa, N. Macaraeg, A.P. Lee, and F.C. Szoka, 
Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex 
transfection. Journal of Controlled Release, 2009. 135(2): p. 166-174. 

23. Chan, C., T. Senden, and D. Jans, Supramolecular structure and nuclear targeting 
efficiency determine the enhancement of transfection by modified polylysines. 
Gene Therapy, 2000. 7(19): p. 1690-1697. 

24. Subramanian, A., P. Ranganathan, and S.L. Diamond, Nuclear targeting peptide 
scaffolds for lipofection of nondividing mammalian cells. Nature Biotechnology, 
1999. 17(9): p. 873-877. 

25. Saccardo, P., A. Villaverde, and N. Gonzalez-Montalban, Peptide-mediated DNA 
condensation for non-viral gene therapy. Biotechnology Advances, 2009. 27(4): 
p. 432-438. 

26. Pack, D.W., A.S. Hoffman, S. Pun, and P.S. Stayton, Design and development of 
polymers for gene delivery. Nature Reviews Drug Discovery, 2005. 4(7): p. 581-
593. 



www.manaraa.com

 
99 

 

27. Plank, C., B. Oberhauser, K. Mechtler, C. Koch, and E. Wagner, The Influence of 
Endosome-Disruptive Peptides on Gene-Transfer Using Synthetic Virus-Like 
Gene-Transfer Systems. Journal of Biological Chemistry, 1994. 269(17): p. 
12918-12924. 

28. Godbey, W.T. and A.G. Mikos, Recent progress in gene delivery using non-viral 
transfer complexes. Journal of Controlled Release, 2001. 72(1-3): p. 115-125. 

29. Putnam, D. and R. Langer, Poly(4-hydroxy-L-proline ester): Low-temperature 
polycondensation and plasmid DNA complexation. Macromolecules, 1999. 
32(11): p. 3658-3662. 

30. Lv, H., S. Zhang, B. Wang, S. Cui, and J. Yan, Toxicity of cationic lipids and 
cationic polymers in gene delivery. Journal of Controlled Release, 2006. 114(1): 
p. 100-109. 

31. Suh, J., H.J. Paik, and B.K. Hwang, Ionization of Poly(Ethylenimine) and 
Poly(Allylamine) at Various Phs. Bioorganic Chemistry, 1994. 22(3): p. 318-327. 

32. Forrest, M.L., G.E. Meister, J.T. Koerber, and D.W. Pack, Partial acetylation of 
polyethylenimine enhances in vitro gene delivery. Pharmaceutical Research, 2004. 
21(2): p. 365-371. 

33. Midoux, P., C. Pichon, J.J. Yaouanc, and P.A. Jaffres, Chemical vectors for gene 
delivery: a current review on polymers, peptides and lipids containing histidine or 
imidazole as nucleic acids carriers. British Jornal of Pharmacology, 2009. 157(2): 
p. 166-78. 

34. Midoux, P. and M. Monsigny, Efficient gene transfer by histidylated polylysine 
pDNA complexes. Bioconjugate Chemistry, 1999. 10(3): p. 406-411. 

35. Putnam, D., C.A. Gentry, D.W. Pack, and R. Langer, Polymer-based gene 
delivery with low cytotoxicity by a unique balance of side-chain termini. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2001. 98(3): p. 1200-1205. 

36. Ghosh, P., G. Han, M. De, C.K. Kim, and V.M. Rotello, Gold nanoparticles in 
delivery applications. Advanced Drug Delivery Reviews, 2008. 60(11): p. 1307-
1315. 

37. Pissuwan, D., T. Niidome, and M.B. Cortie, The forthcoming applications of gold 
nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 
2011. 149(1): p. 65-71. 

38. Ghosh, P.S., C.K. Kim, G. Han, N.S. Forbes, and V.M. Rotello, Efficient Gene 
Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-
Functionalized Gold Nanoparticles. ACS Nano, 2008. 2(11): p. 2213-2218. 

39. Arents, G., R.W. Burlingame, B.C. Wang, W.E. Love, and E.N. Moudrianakis, 
The Nucleosomal Core Histone Octamer at 3.1-a Resolution - a Tripartite Protein 
Assembly and a Left-Handed Superhelix. Proceedings of the National Academy of 
Sciences of the United States of America, 1991. 88(22): p. 10148-10152. 



www.manaraa.com

 
100 

 

40. Kim, S.T., A. Chompoosor, Y.C. Yeh, S.S. Agasti, D.J. Solfiell, and V.M. 
Rotello, Dendronized Gold Nanoparticles for siRNA Delivery. Small, 2012. 8(21): 
p. 3253-3256. 

41. Wei, H., L.R. Volpatti, D.L. Sellers, D.O. Maris, I.W. Andrews, A.S. Hemphill, 
L.W. Chan, D.S.H. Chu, P.J. Horner, and S.H. Pun, Dual Responsive, Stabilized 
Nanoparticles for Efficient In Vivo Plasmid Delivery. Angewandte Chemie-
International Edition, 2013. 52(20): p. 5377-5381. 

42. Choi, J.L., J.-K.Y. Tan, D.L. Sellers, H. Wei, P.J. Horner, and S.H. Pun, 
Guanidinylated block copolymers for gene transfer: A comparison with amine-
based materials for in vitro and in vivo gene transfer efficiency. Biomaterials, 
2015. 54: p. 87-96. 

43. Bennink, M.L., S.H. Leuba, G.H. Leno, J. Zlatanova, B.G. de Grooth, and J. 
Greve, Unfolding individual nucleosomes by stretching single chromatin fibers 
with optical tweezers. Nature Structural Biology, 2001. 8(7): p. 606-610. 

44. van den Broek, B., M.C. Noom, J. van Mameren, C. Battle, F.C. Mackintosh, and 
G.J. Wuite, Visualizing the formation and collapse of DNA toroids. Biophysical 
Journal, 2010. 98(9): p. 1902-10. 

45. Besteman, K., K. Van Eijk, and S.G. Lemay, Charge inversion accompanies DNA 
condensation by multivalent ions. Nature Physics, 2007. 3(9): p. 641-644. 

46. Ritort, F., S. Mihardja, S.B. Smith, and C. Bustamante, Condensation transition 
in DNA-polyaminoamide dendrimer fibers studied using optical tweezers. 
Physical Review Letters, 2006. 96(11): p. 118301. 

47. Bustamante, C., Z. Bryant, and S.B. Smith, Ten years of tension: single-molecule 
DNA mechanics. Nature, 2003. 421(6921): p. 423-7. 

48. Lang, M.J., P.M. Fordyce, A.M. Engh, K.C. Neuman, and S.M. Block, 
Simultaneous, coincident optical trapping and single-molecule fluorescence. 
Nature Methods, 2004. 1(2): p. 133-9. 

49. Ashkin, A., J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, Observation of a Single-
Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters, 1986. 
11(5): p. 288-290. 

50. Smith, S.B., Y. Cui, and C. Bustamante, Optical-trap force transducer that 
operates by direct measurement of light momentum. Methods in Enzymology, 
2003. 361: p. 134-62. 

51. Moffitt, J.R., Y.R. Chemla, S.B. Smith, and C. Bustamante, Recent Advances in 
Optical Tweezers. Annual Review of Biochemistry, 2008. 77: p. 205-228. 

52. Wang, M.D., H. Yin, R. Landick, J. Gelles, and S.M. Block, Stretching DNA with 
optical tweezers. Biophysical Journal, 1997. 72(3): p. 1335-46. 

53. Sischka, A., K. Toensing, R. Eckel, S.D. Wilking, N. Sewald, R. Ros, and D. 
Anselmetti, Molecular mechanisms and kinetics between DNA and DNA binding 
ligands. Biophysical Journal, 2005. 88(1): p. 404-11. 



www.manaraa.com

 
101 

 

54. Mihailovic, A., I. Vladescu, M. McCauley, E. Ly, M.C. Williams, E.M. Spain, 
and M.E. Nunez, Exploring the interaction of ruthenium(II) polypyridyl 
complexes with DNA using single-molecule techniques. Langmuir, 2006. 22(10): 
p. 4699-709. 

55. Vladescu, I.D., M.J. McCauley, I. Rouzina, and M.C. Williams, Mapping the 
phase diagram of single DNA molecule force-induced melting in the presence of 
ethidium. Physical Review Letters, 2005. 95(15): p. 158102. 

56. Brower-Toland, B.D., C.L. Smith, R.C. Yeh, J.T. Lis, C.L. Peterson, and M.D. 
Wang, Mechanical disruption of individual nucleosomes reveals a reversible 
multistage release of DNA. Proceedings of the National Academy of Sciences of 
the United States of America, 2002. 99(4): p. 1960-1965. 

57. Brower-Toland, B., D.A. Wacker, R.M. Fulbright, J.T. Lis, W.L. Kraus, and M.D. 
Wang, Specific contributions of histone tails and their acetylation to the 
mechanical stability of nucleosomes. Journal of Molecular Biology, 2005. 346(1): 
p. 135-146. 

58. Camunas-Soler, J., S. Frutos, C.V. Bizarro, S. de Lorenzo, M.E. Fuentes-Perez, R. 
Ramsch, S. Vilchez, C. Solans, F. Moreno-Herrero, F. Albericio, R. Eritja, E. 
Giralt, S.B. Dev, and F. Ritort, Electrostatic binding and hydrophobic collapse of 
Peptide-nucleic Acid aggregates quantified using force spectroscopy. ACS Nano, 
2013. 7(6): p. 5102-13. 

59. Milstein, J.N. and J.C. Meiners, On the role of DNA biomechanics in the 
regulation of gene expression. Journal of The Royal Society Interface, 2011. 
8(65): p. 1673-81. 

60. Wang, M.D., M.J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S.M. Block, 
Force and velocity measured for single molecules of RNA polymerase. Science, 
1998. 282(5390): p. 902-907. 

61. Yu, J., J. Moffitt, C.L. Hetherington, C. Bustamante, and G. Oster, 
Mechanochemistry of a Viral DNA Packaging Motor. Journal of Molecular 
Biology, 2010. 400(2): p. 186-203. 

62. EssevazRoulet, B., U. Bockelmann, and F. Heslot, Mechanical separation of the 
complementary strands of DNA. Proceedings of the National Academy of 
Sciences of the United States of America, 1997. 94(22): p. 11935-11940. 

63. Han, G., N.S. Chari, A. Verma, R. Hong, C.T. Martin, and V.M. Rotello, 
Controlled recovery of the transcription of nanoparticle-bound DNA by 
intracellular concentrations of glutathione. Bioconjugate Chemistry, 2005. 16(6): 
p. 1356-1359. 

64. Maier, B., D. Bensimon, and V. Croquette, Replication by a single DNA 
polymerase of a stretched single-stranded DNA. Proceedings of the National 
Academy of Sciences of the United States of America, 2000. 97(22): p. 12002-
12007. 



www.manaraa.com

 
102 

 

65. Smith, D.E., S.J. Tans, S.B. Smith, S. Grimes, D.L. Anderson, and C. 
Bustamante, The bacteriophage phi 29 portal motor can package DNA against a 
large internal force. Nature, 2001. 413(6857): p. 748-752. 

66. Smith, S.B., Y.J. Cui, and C. Bustamante, Optical-trap force transducer that 
operates by direct measurement of light momentum. Biophotonics, Pt B, 2003. 
361: p. 134-162. 

67. Pichon, C., B. Guerin, M. Refregiers, C. Goncalves, P. Vigny, and P. Midoux, 
Zinc improves gene transfer mediated by DNA/cationic polymer complexes. 
Journal of Gene Medicine, 2002. 4(5): p. 548-559. 

68. Stone, M.D., Z. Bryant, N.J. Crisona, S.B. Smith, A. Vologodskii, C. Bustamante, 
and N.R. Cozzarelli, Chirality sensing by Escherichia coli topoisomerase IV and 
the mechanism of type II topoisomerases. Proceedings of the National Academy 
of Sciences of the United States of America, 2003. 100(15): p. 8654-8659. 

69. Rouzina, I. and V.A. Bloomfield, DNA bending by small, mobile multivalent 
cations. Biophysical Journal, 1998. 74(6): p. 3152-3164. 

70. Baumann, C.G., V.A. Bloomfield, S.B. Smith, C. Bustamante, M.D. Wang, and 
S.M. Block, Stretching of single collapsed DNA molecules. Biophysical Journal, 
2000. 78(4): p. 1965-78. 

71. Li, I.T. and G.C. Walker, Signature of hydrophobic hydration in a single polymer. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2011. 108(40): p. 16527-32. 

72. Trzaskowski, B., L. Adamowicz, and P.A. Deymier, A theoretical study of zinc(II) 
interactions with amino acid models and peptide fragments. Journal of Biological 
Inorganic Chemistry, 2008. 13(1): p. 133-137. 

73. Nyborg, J.K. and O.B. Peersen, That zincing feeling: the effects of EDTA on the 
behaviour of zinc-binding transcriptional regulators. Biochemical Journal, 2004. 
381(Pt 3): p. e3-4. 

74. Conti, M., G. Falini, and B. Samori, How strong is the coordination bond between 
a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on 
single molecules. Angewandte Chemie-International Edition, 2000. 39(1): p. 215-
218. 

75. Cao, Y., T. Yoo, and H.B. Li, Single molecule force spectroscopy reveals 
engineered metal chelation is a general approach to enhance mechanical stability 
of proteins. Proceedings of the National Academy of Sciences of the United 
States of America, 2008. 105(32): p. 11152-11157. 

76. Zhao, C., L.M. Hellman, X. Zhan, W.S. Bowman, S.W. Whiteheart, and M.G. 
Fried, Hexahistidine-tag-specific optical probes for analyses of proteins and their 
interactions. Analytical Biochemistry, 2010. 399(2): p. 237-45. 

77. Li, H.B., A.F. Oberhauser, S.B. Fowler, J. Clarke, and J.M. Fernandez, Atomic 
force microscopy reveals the mechanical design of a modular protein. 



www.manaraa.com

 
103 

 

Proceedings of the National Academy of Sciences of the United States of 
America, 2000. 97(12): p. 6527-6531. 

78. Zhang, X.H., K. Halvorsen, C.Z. Zhang, W.P. Wong, and T.A. Springer, 
Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand 
Factor. Science, 2009. 324(5932): p. 1330-1334. 

79. Fosmire, G.J., Zinc toxicity. American Journal of Clinical Nutrition, 1990. 51(2): 
p. 225-7. 

80. Goulle, J.P., L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Laine, D. 
Bouige, and C. Lacroix, Metal and metalloid multi-elementary ICP-MS validation 
in whole blood, plasma, urine and hair. Reference values. Forensic Science 
International, 2005. 153(1): p. 39-44. 

81. Outten, C.E. and T.V. O'Halloran, Femtomolar sensitivity of metalloregulatory 
proteins controlling zinc homeostasis. Science, 2001. 292(5526): p. 2488-2492. 

82. Chou, S.T., K. Hom, D. Zhang, Q. Leng, L.J. Tricoli, J.M. Hustedt, A. Lee, M.J. 
Shapiro, J. Seog, J.D. Kahn, and A.J. Mixson, Enhanced silencing and 
stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds. 
Biomaterials, 2014. 35(2): p. 846-55. 

83. Rungsardthong, U., T. Ehtezazi, L. Bailey, S.P. Armes, M.C. Garnett, and S. 
Stolnik, Effect of polymer ionization on the interaction with DNA in nonviral gene 
delivery systems. Biomacromolecules, 2003. 4(3): p. 683-90. 

84. Strand, S.P., S. Danielsen, B.E. Christensen, and K.M. Varum, Influence of 
chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte 
complexes. Biomacromolecules, 2005. 6(6): p. 3357-3366. 

85. Verma, I.M. and N. Somia, Gene therapy -- promises, problems and prospects. 
Nature, 1997. 389(6648): p. 239-42. 

86. Niidome, T. and L. Huang, Gene therapy progress and prospects: nonviral 
vectors. Gene Therapy, 2002. 9(24): p. 1647-52. 

87. Schaffer, D.V., N.A. Fidelman, N. Dan, and D.A. Lauffenburger, Vector 
unpacking as a potential barrier for receptor-mediated polyplex gene delivery. 
Biotechnology and Bioengineering, 2000. 67(5): p. 598-606. 

88. Lee, A., A. Karcz, R. Akman, T. Zheng, S. Kwon, S.T. Chou, S. Sucayan, L.J. 
Tricoli, J.M. Hustedt, Q. Leng, J.D. Kahn, A.J. Mixson, and J. Seog, Direct 
observation of dynamic mechanical regulation of DNA condensation by 
environmental stimuli. Angewandte Chemie, International Edition in English, 
2014. 53(40): p. 10631-5. 

89. Nguyen, T.T.R., I.; Shklovskii, B.I. , Reentrant Condensation of DNA Induced by 
Multivalent Counterions. Journal of Chemical Physics, 2000. 112(5). 

90. Bertschinger, M., G. Backliwal, A. Schertenleib, M. Jordan, D.L. Hacker, and 
F.M. Wurm, Disassembly of polyethylenimine-DNA particles in vitro: 
implications for polyethylenimine-mediated DNA delivery. Journal of Controlled 
Release, 2006. 116(1): p. 96-104. 



www.manaraa.com

 
104 

 

91. Moret, I., J. Esteban Peris, V.M. Guillem, M. Benet, F. Revert, F. Dasi, A. 
Crespo, and S.F. Alino, Stability of PEI-DNA and DOTAP-DNA complexes: effect 
of alkaline pH, heparin and serum. Journal of Controlled Release, 2001. 76(1-2): 
p. 169-81. 

92. Han, G., C.T. Martin, and V.M. Rotello, Stability of gold nanoparticle-bound 
DNA toward biological, physical, and chemical agents. Chemical Biology & 
Drug Design, 2006. 67(1): p. 78-82. 

93. Goodman, C.M., N.S. Chari, G. Han, R. Hong, P. Ghosh, and V.M. Rotello, 
DNA-binding by functionalized gold nanoparticles: Mechanism and structural 
requirements. Chemical Biology & Drug Design, 2006. 67(4): p. 297-304. 

94. Sandhu, K.K., C.M. McIntosh, J.M. Simard, S.W. Smith, and V.M. Rotello, Gold 
nanoparticle-mediated Transfection of mammalian cells. Bioconjugate Chemistry, 
2002. 13(1): p. 3-6. 

95. Grigsby, C.L. and K.W. Leong, Balancing protection and release of DNA: tools 
to address a bottleneck of non-viral gene delivery. Journal of The Royal Society 
Interface, 2010. 7 Suppl 1: p. S67-82. 

96. Godbey, W.T., K.K. Wu, and A.G. Mikos, Tracking the intracellular path of 
poly(ethylenimine)/DNA complexes for gene delivery. Proceedings of the National 
Academy of Sciences of the United States of America, 1999. 96(9): p. 5177-5181. 

97. Li, S. and L. Huang, Nonviral gene therapy: promises and challenges. Gene 
Therapy, 2000. 7(1): p. 31-4. 

98. De Laporte, L., J. Cruz Rea, and L.D. Shea, Design of modular non-viral gene 
therapy vectors. Biomaterials, 2006. 27(7): p. 947-54. 

99. Varkouhi, A.K., M. Scholte, G. Storm, and H.J. Haisma, Endosomal escape 
pathways for delivery of biologicals. Journal of Controlled Release, 2011. 151(3): 
p. 220-8. 

100. Neuman, K.C. and A. Nagy, Single-molecule force spectroscopy: optical 
tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008. 
5(6): p. 491-505. 

101. Carlson, P.M., J.G. Schellinger, J.A. Pahang, R.N. Johnson, and S.H. Pun, 
Comparative study of guanidine-based and lysine-based brush copolymers for 
plasmid delivery. Biomaterials Science, 2013. 1(7): p. 736-744. 

102. Ganta, S., H. Devalapally, A. Shahiwala, and M. Amiji, A review of stimuli-
responsive nanocarriers for drug and gene delivery. Journal of Controlled 
Release, 2008. 126(3): p. 187-204. 

103. Brancia, F.L., S.G. Oliver, and S.J. Gaskell, Improved matrix-assisted laser 
desorption/ionization mass spectrometric analysis of tryptic hydrolysates of 
proteins following guanidination of lysine-containing peptides. Rapid 
Communications in Mass Spectrometry, 2000. 14(21): p. 2070-2073. 

104. Futaki, S., Membrane-permeable arginine-rich peptides and the translocation 
mechanisms. Advanced Drug Delivery Reviews, 2005. 57(4): p. 547-558. 



www.manaraa.com

 
105 

 

105. Wender, P.A., W.C. Galliher, E.A. Goun, L.R. Jones, and T.H. Pillow, The design 
of guanidinium-rich transporters and their internalization mechanisms. Advanced 
Drug Delivery Reviews, 2008. 60(4-5): p. 452-472. 

106. Kim, I.D., C.M. Lim, J.B. Kim, H.Y. Nam, K. Nam, S.W. Kim, J.S. Park, and 
J.K. Lee, Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated 
HMGB1 siRNA delivery in primary cortical cultures and in the postischemic 
brain. Journal of Controlled Release, 2010. 142(3): p. 422-430. 

107. Mann, A., G. Thakur, V. Shukla, A.K. Singh, R. Khanduri, R. Naik, Y. Jiang, N. 
Kalra, B.S. Dwarakanath, U. Langel, and M. Ganguli, Differences in DNA 
Condensation and Release by Lysine and Arginine Homopeptides Govern Their 
DNA Delivery Efficiencies. Molecular Pharmaceutics, 2011. 8(5): p. 1729-1741. 

108. DeRouchey, J., B. Hoover, and D.C. Rau, A Comparison of DNA Compaction by 
Arginine and Lysine Peptides: A Physical Basis for Arginine Rich Protarnines. 
Biochemistry, 2013. 52(17): p. 3000-3009. 

109. Mascotti, D.P. and T.M. Lohman, Thermodynamics of oligoarginines binding to 
RNA and DNA. Biochemistry, 1997. 36(23): p. 7272-7279. 

110. Standke, K.H. and H. Brunnert, Estimation of Affinity Constants for Binding of 
Model Peptides to DNA by Equilibrium Dialysis. Nucleic Acids Research, 1975. 
2(10): p. 1839-1849. 

111. Wehling, K., H.A. Arfmann, K.H.C. Standke, and K.G. Wagner, Specifity of DNA 
Basic Polypeptide Interactions - Influence of Neutral Residues Incorporated into 
Polylysine and Polyarginine. Nucleic Acids Research, 1975. 2(6): p. 799-807. 

112. Jones, D.P., J.L. Carlson, P.S. Samiec, P. Sternberg, V.C. Mody, R.L. Reed, and 
L.A.S. Brown, Glutathione measurement in human plasma Evaluation of sample 
collection, storage and derivatization conditions for analysis of dansyl derivatives 
by HPLC. Clinica Chimica Acta, 1998. 275(2): p. 175-184. 

113. Anderson, M.E., F. Powrie, R.N. Puri, and A. Meister, Glutathione monoethyl 
ester: preparation, uptake by tissues, and conversion to glutathione. Archives of 
Biochemistry and Biophysics, 1985. 239(2): p. 538-548. 

114. Mercier, F. and E. Arikawa-Hirasawa, Heparan sulfate niche for cell proliferation 
in the adult brain. Neuroscience Letters, 2012. 510(2): p. 67-72. 

115. Ellis, R.J., Macromolecular crowding: obvious but underappreciated. Trends in 
Biochemical Sciences, 2001. 26(10): p. 597-604. 

116. Krotova, M.K., V.V. Vasilevskaya, N. Makita, K. Yoshikawa, and A.R. 
Khokhlov, DNA compaction in a crowded environment with negatively charged 
proteins. Physical Review Letters, 2010. 105(12): p. 128302. 

117. Nakano, S., H. Karimata, T. Ohmichi, J. Kawakami, and N. Sugimoto, The effect 
of molecular crowding with nucleotide length and cosolute structure on DNA 
duplex stability. Journal of the American Chemical Society, 2004. 126(44): p. 
14330-14331. 

 


	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Biological barriers and current approaches to gene delivery
	1.2 Non-viral vectors for single molecule investigation
	1.2.1 Histidine-lysine peptides
	1.2.2 Surface-modified gold nanoparticles
	1.2.3 Dual responsive polymers

	1.3 Optical tweezers
	1.3.1 Single molecule studies of DNA

	1.4 Significance and innovation

	2 Direct Observation of Dynamic Mechanical Regulation of DNA Condensation by Environmental Stimuli0F
	2.1 Introduction
	2.2 Materials and methods
	2.2.1 Materials
	2.2.2 Optical tweezer setup and force measurements
	2.2.3 Force profile analysis

	2.3 Results and discussion
	2.3.1 Bound PLL displays resistance to washing compared to bound HK peptide
	2.3.2 DNA:HK complex recovers force plateaus at pH 5
	2.3.3 Zn2+ chelation reversibly induces a mechanically rigid DNA:HK complex

	3.4 Conclusion

	3 Observation of Multi-stage DNA Condensation by Dendronized Gold Nanoparticles and Polyethyleneimine Using Optical Tweezers
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Materials
	3.2.2 Force measurements
	3.2.3 General and pulse protocols for condensation
	3.2.4 Changing the microfluidic environment
	3.2.5 Force profile analysis

	3.3 Results
	3.3.1 PEI Demonstrates Overcharging Behavior When Condensing DNA
	3.3.2 Salt and Heparin Destabilize DNA:PEI Complexes
	3.3.3 DNA:PEI Complex Mechanics are pH Sensitive
	3.3.4 G2-TETA Gold Nanoparticles Bind and Condense DNA
	3.3.5 SDS Destabilizes DNA:G2-TETA Complexes

	3.4 Discussion
	3.5 Conclusion

	4 Guanidinylated Triblock Copolymer Shows Sensitivity to Ionic Environments Compared to Base Copolymer
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 Materials
	4.2.2 Polymer synthesis and preparation
	4.2.3 TCEP pretreatment of copolymer
	4.2.4 Complex preparation in the microfluidic chamber
	4.2.6 Destabilizing conditions to disrupt condensed DNA complexes

	4.3 Results
	4.3.1 Base copolymer exhibits dynamic condensation of DNA
	4.3.2 Simultaneous perturbation of hydrophobic and electrostatic interactions are required for destabilization of DNA:base copolymer
	4.3.3 TCEP pretreatment of base copolymer allows for electrostatic modulation of mechanical properties
	4.3.4 Guanidinylated copolymer exhibits maximal plateaus during condensation
	5.3.5 1 M NaCl destabilizes DNA:guanidinylated copolymer complexes
	4.3.6 TCEP-treated guanidinylated copolymer shows resistance to washing in ionic environments

	4.4 Discussion
	4.5 Conclusion

	5 Identification of Key Mechanical Criteria for Maximum Transfection Efficiencies
	6 Future Work and Outlook
	6.1 Role of molecular crowding
	6.1.1 Experimental approach
	6.1.2 Expected results, interpretation, possible pitfalls

	6.2 Mechanical response to biological environments
	6.3 Design of a new optimal transfection agent based on a library and screening of agents with the OT as in situ testing of novel agents
	6.3.1 Experimental approach

	6.4 Concluding remarks

	7 Appendix A – Efficacy of Bovine Serum Albumin (BSA) Blocking
	Bibliography

